aboutsummaryrefslogtreecommitdiff
path: root/sys
diff options
context:
space:
mode:
authorNicholas Noll <nbnoll@eml.cc>2020-06-02 14:55:42 -0700
committerNicholas Noll <nbnoll@eml.cc>2020-06-02 14:55:42 -0700
commit5f8b49fd56158b07f10333cb8873b1b80fc2f9ee (patch)
tree418e1ff2b629902f043d74f2b36c475b9f5dda6b /sys
parent0fae7444c66080616eba01f7702bdb2d9b493166 (diff)
refactored stb font library into a cleaner unix library
Diffstat (limited to 'sys')
-rw-r--r--sys/libfont/font.c3298
-rw-r--r--sys/libfont/rules.mk19
-rw-r--r--sys/libfont/test.c62
3 files changed, 3379 insertions, 0 deletions
diff --git a/sys/libfont/font.c b/sys/libfont/font.c
new file mode 100644
index 0000000..f7dfce7
--- /dev/null
+++ b/sys/libfont/font.c
@@ -0,0 +1,3298 @@
+#include <u.h>
+#include <libn.h>
+#include <libfont.h>
+
+#define SAMPLE 8 /* should not be > 255 */
+
+#define getshort(b) getbytes((b), 2)
+#define getint(b) getbytes((b), 4)
+
+// -----------------------------------------------------------------------
+// internal types
+
+typedef struct Buffer Buffer;
+typedef struct Edge Edge;
+typedef struct ActiveEdge ActiveEdge;
+typedef struct Point Point;
+
+struct Buffer
+{
+ uchar *data;
+ int cursor;
+ int size;
+};
+
+struct Edge {
+ float x0, y0, x1,y1;
+ int invert;
+};
+
+struct ActiveEdge
+{
+ struct ActiveEdge *next;
+ float fx,fdx,fdy;
+ float direction;
+ float sy;
+ float ey;
+};
+
+struct Point
+{
+ float x,y;
+};
+
+// -----------------------------------------------------------------------
+// opaque external types
+
+struct font·Info
+{
+ void *userdata;
+ uchar *data; // pointer to .ttf file
+ int fontstart; // offset of start of font
+
+ int numglyphs; // number of glyphs, needed for range checking
+
+ int loca,head,glyf,hhea,hmtx,kern,gpos,svg; // table locations as offset from start of .ttf
+ int index_map; // a cmap mapping for our chosen character encoding
+ int indexToLocFormat; // format needed to map from glyph index to glyph
+
+ Buffer cff; // cff font data
+ Buffer charstrings; // the charstring index
+ Buffer gsubrs; // global charstring subroutines index
+ Buffer subrs; // private charstring subroutines index
+ Buffer fontdicts; // array of font dicts
+ Buffer fdselect; // map from glyph to fontdict
+};
+
+struct font·Bitmap
+{
+ int w;
+ int h;
+ int stride;
+ uchar *pixels;
+};
+
+typedef int test_oversample_pow2[(SAMPLE & (SAMPLE-1)) == 0 ? 1 : -1];
+
+// -----------------------------------------------------------------------
+// buf helpers to parse data from file
+
+static
+uchar
+getbyte(Buffer *b)
+{
+ if (b->cursor >= b->size)
+ return 0;
+ return b->data[b->cursor++];
+}
+
+static
+uchar
+peek(Buffer *b)
+{
+ if (b->cursor >= b->size)
+ return 0;
+ return b->data[b->cursor];
+}
+
+static
+void
+seek(Buffer *b, int o)
+{
+ assert(!(o > b->size || o < 0));
+ b->cursor = (o > b->size || o < 0) ? b->size : o;
+}
+
+static
+void
+skip(Buffer *b, int o)
+{
+ seek(b, b->cursor + o);
+}
+
+static
+uint32
+getbytes(Buffer *b, int n)
+{
+ uint32 v = 0;
+ int i;
+ assert(n >= 1 && n <= 4);
+ for (i = 0; i < n; i++)
+ v = (v << 8) | getbyte(b);
+ return v;
+}
+
+static
+Buffer
+makebuf(const void *p, size_t size)
+{
+ Buffer r;
+ assert(size < 0x40000000);
+ r.data = (uchar*) p;
+ r.size = (int) size;
+ r.cursor = 0;
+ return r;
+}
+
+static
+Buffer
+slice(const Buffer *b, int o, int s)
+{
+ Buffer r = makebuf(nil, 0);
+ if (o < 0 || s < 0 || o > b->size || s > b->size - o) return r;
+ r.data = b->data + o;
+ r.size = s;
+ return r;
+}
+
+static
+Buffer
+cff_index(Buffer *b)
+{
+ int count, start, offsize;
+
+ start = b->cursor;
+ count = getshort(b);
+ if (count) {
+ offsize = getbyte(b);
+ assert(offsize >= 1 && offsize <= 4);
+ skip(b, offsize * count);
+ skip(b, getbytes(b, offsize) - 1);
+ }
+ return slice(b, start, b->cursor - start);
+}
+
+static
+uint32
+cff_int(Buffer *b)
+{
+ int b0 = getbyte(b);
+ if (b0 >= 32 && b0 <= 246) return b0 - 139;
+ else if (b0 >= 247 && b0 <= 250) return (b0 - 247)*256 + getbyte(b) + 108;
+ else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - getbyte(b) - 108;
+ else if (b0 == 28) return getshort(b);
+ else if (b0 == 29) return getint(b);
+ assert(0);
+ return 0;
+}
+
+static
+void
+skip_operand(Buffer *b) {
+ int v, b0 = peek(b);
+ assert(b0 >= 28);
+ if (b0 == 30) {
+ skip(b, 1);
+ while (b->cursor < b->size) {
+ v = getbyte(b);
+ if ((v & 0xF) == 0xF || (v >> 4) == 0xF)
+ break;
+ }
+ } else {
+ cff_int(b);
+ }
+}
+
+static
+Buffer
+dict_get(Buffer *b, int key)
+{
+ seek(b, 0);
+ while (b->cursor < b->size) {
+ int start = b->cursor, end, op;
+ while (peek(b) >= 28)
+ skip_operand(b);
+ end = b->cursor;
+ op = getbyte(b);
+ if (op == 12) op = getbyte(b) | 0x100;
+ if (op == key) return slice(b, start, end-start);
+ }
+ return slice(b, 0, 0);
+}
+
+static
+void
+dict_get_ints(Buffer *b, int key, int outcount, uint32 *out)
+{
+ int i;
+ Buffer operands = dict_get(b, key);
+ for (i = 0; i < outcount && operands.cursor < operands.size; i++)
+ out[i] = cff_int(&operands);
+}
+
+static
+int
+cff_index_count(Buffer *b)
+{
+ seek(b, 0);
+ return getshort(b);
+}
+
+static
+Buffer
+cff_index_get(Buffer b, int i)
+{
+ int count, offsize, start, end;
+ seek(&b, 0);
+ count = getshort(&b);
+ offsize = getbyte(&b);
+ assert(i >= 0 && i < count);
+ assert(offsize >= 1 && offsize <= 4);
+ skip(&b, i*offsize);
+ start = getbytes(&b, offsize);
+ end = getbytes(&b, offsize);
+ return slice(&b, 2+(count+1)*offsize+start, end - start);
+}
+
+// -----------------------------------------------------------------------
+// accessors to parse data from file
+
+/*
+ * on platforms that don't allow misaligned reads, if we want to allow
+ * truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE
+ */
+
+#define ttBYTE(p) (* (uchar *) (p))
+#define ttCHAR(p) (* (char *) (p))
+#define ttFixed(p) ttLONG(p)
+
+static ushort ttUSHORT(uchar *p) { return p[0]*256 + p[1]; }
+static short ttSHORT(uchar *p) { return p[0]*256 + p[1]; }
+static uint32 ttULONG(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; }
+static int32 ttLONG(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; }
+
+#define font·tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3))
+#define font·tag(p,str) font·tag4(p,str[0],str[1],str[2],str[3])
+
+static
+int
+isfont(uchar *font)
+{
+ // check the version number
+ if (font·tag4(font, '1',0,0,0)) return 1; // TrueType 1
+ if (font·tag(font, "typ1")) return 1; // TrueType with type 1 font -- we don't support this!
+ if (font·tag(font, "OTTO")) return 1; // OpenType with CFF
+ if (font·tag4(font, 0,1,0,0)) return 1; // OpenType 1.0
+ if (font·tag(font, "true")) return 1; // Apple specification for TrueType fonts
+
+ return 0;
+}
+
+// @OPTIMIZE: binary search
+static
+uint32
+find_table(uchar *data, uint32 fontstart, const char *tag)
+{
+ int i;
+ int32 ntab;
+ uint32 tabdir;
+
+ ntab = ttUSHORT(data+fontstart+4);
+ tabdir = fontstart + 12;
+ for (i=0; i < ntab; ++i) {
+ uint32 loc = tabdir + 16*i;
+ if (font·tag(data+loc+0, tag))
+ return ttULONG(data+loc+8);
+ }
+ return 0;
+}
+
+int
+font·offsetfor(uchar *font_collection, int index)
+{
+ // if it's just a font, there's only one valid index
+ if (isfont(font_collection))
+ return index == 0 ? 0 : -1;
+
+ // check if it's a TTC
+ if (font·tag(font_collection, "ttcf")) {
+ // version 1?
+ if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) {
+ int32 n = ttLONG(font_collection+8);
+ if (index >= n)
+ return -1;
+ return ttULONG(font_collection+12+index*4);
+ }
+ }
+ return -1;
+}
+
+int
+font·number(uchar *font_collection)
+{
+ // if it's just a font, there's only one valid font
+ if (isfont(font_collection))
+ return 1;
+
+ // check if it's a TTC
+ if (font·tag(font_collection, "ttcf")) {
+ // version 1?
+ if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) {
+ return ttLONG(font_collection+8);
+ }
+ }
+ return 0;
+}
+
+static
+Buffer
+get_subrs(Buffer cff, Buffer fontdict)
+{
+ uint32 subrsoff = 0, private_loc[2] = { 0, 0 };
+ Buffer pdict;
+ dict_get_ints(&fontdict, 18, 2, private_loc);
+ if (!private_loc[1] || !private_loc[0]) return makebuf(nil, 0);
+ pdict = slice(&cff, private_loc[1], private_loc[0]);
+ dict_get_ints(&pdict, 19, 1, &subrsoff);
+ if (!subrsoff) return makebuf(nil, 0);
+ seek(&cff, private_loc[1]+subrsoff);
+ return cff_index(&cff);
+}
+
+// since most people won't use this, find this table the first time it's needed
+static
+int
+get_svg(font·Info *info)
+{
+ uint32 t;
+ if (info->svg < 0) {
+ t = find_table(info->data, info->fontstart, "SVG ");
+ if (t) {
+ uint32 offset = ttULONG(info->data + t + 2);
+ info->svg = t + offset;
+ } else {
+ info->svg = 0;
+ }
+ }
+ return info->svg;
+}
+
+static
+int
+init(font·Info *info, uchar *data, int fontstart)
+{
+ uint32 cmap, t;
+ int32 i,numTables;
+
+ info->data = data;
+ info->fontstart = fontstart;
+ info->cff = makebuf(nil, 0);
+
+ cmap = find_table(data, fontstart, "cmap"); // required
+ info->loca = find_table(data, fontstart, "loca"); // required
+ info->head = find_table(data, fontstart, "head"); // required
+ info->glyf = find_table(data, fontstart, "glyf"); // required
+ info->hhea = find_table(data, fontstart, "hhea"); // required
+ info->hmtx = find_table(data, fontstart, "hmtx"); // required
+ info->kern = find_table(data, fontstart, "kern"); // not required
+ info->gpos = find_table(data, fontstart, "GPOS"); // not required
+
+ if (!cmap || !info->head || !info->hhea || !info->hmtx)
+ return 0;
+ if (info->glyf) {
+ // required for truetype
+ if (!info->loca)
+ return 1;
+ } else {
+ // initialization for CFF / Type2 fonts (OTF)
+ Buffer b, topdict, topdictidx;
+ uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0;
+ uint32 cff;
+
+ cff = find_table(data, fontstart, "CFF ");
+ if (!cff)
+ return 1;
+
+ info->fontdicts = makebuf(nil, 0);
+ info->fdselect = makebuf(nil, 0);
+
+ // @TODO this should use size from table (not 512MB)
+ info->cff = makebuf(data+cff, 512*1024*1024);
+ b = info->cff;
+
+ // read the header
+ skip(&b, 2);
+ seek(&b, getbyte(&b)); // hdrsize
+
+ // @TODO the name INDEX could list multiple fonts,
+ // but we just use the first one.
+ cff_index(&b); // name INDEX
+ topdictidx = cff_index(&b);
+ topdict = cff_index_get(topdictidx, 0);
+ cff_index(&b); // string INDEX
+ info->gsubrs = cff_index(&b);
+
+ dict_get_ints(&topdict, 17, 1, &charstrings);
+ dict_get_ints(&topdict, 0x100 | 6, 1, &cstype);
+ dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff);
+ dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff);
+ info->subrs = get_subrs(b, topdict);
+
+ // we only support Type 2 charstrings
+ if (cstype != 2)
+ return 1;
+ if (charstrings == 0)
+ return 1;
+
+ if (fdarrayoff) {
+ // looks like a CID font
+ if (!fdselectoff)
+ return 1;
+ seek(&b, fdarrayoff);
+ info->fontdicts = cff_index(&b);
+ info->fdselect = slice(&b, fdselectoff, b.size-fdselectoff);
+ }
+
+ seek(&b, charstrings);
+ info->charstrings = cff_index(&b);
+ }
+
+ t = find_table(data, fontstart, "maxp");
+ if (t)
+ info->numglyphs = ttUSHORT(data+t+4);
+ else
+ info->numglyphs = 0xffff;
+
+ info->svg = -1;
+
+ // find a cmap encoding table we understand *now* to avoid searching
+ // later. (todo: could make this installable)
+ // the same regardless of glyph.
+ numTables = ttUSHORT(data + cmap + 2);
+ info->index_map = 0;
+ for (i=0; i < numTables; ++i) {
+ uint32 encoding_record = cmap + 4 + 8 * i;
+ // find an encoding we understand:
+ switch(ttUSHORT(data+encoding_record)) {
+ case font·platform_unicode:
+ // Mac/iOS has these
+ // all the encodingIDs are unicode, so we don't bother to check it
+ info->index_map = cmap + ttULONG(data+encoding_record+4);
+ break;
+ default:
+ ;
+ }
+ }
+ if (info->index_map == 0) {
+ return 1;
+ }
+
+ info->indexToLocFormat = ttUSHORT(data+info->head + 50);
+ return 0;
+}
+
+font·Info *
+font·make(uchar *data, int fontstart)
+{
+ int err;
+ font·Info *info;
+
+ info = calloc(1, sizeof(*info));
+ err = init(info, data, fontstart);
+ if (err) {
+ free(info);
+ info = nil;
+ }
+
+ return info;
+}
+
+void
+font·free(font·Info *info)
+{
+ free(info);
+}
+
+int
+font·glyph_index(font·Info *info, int unicode_codepoint)
+{
+ uchar *data = info->data;
+ uint32 index_map = info->index_map;
+
+ ushort format = ttUSHORT(data + index_map + 0);
+ if (format == 0) { // apple byte encoding
+ int32 bytes = ttUSHORT(data + index_map + 2);
+ if (unicode_codepoint < bytes-6)
+ return ttBYTE(data + index_map + 6 + unicode_codepoint);
+ return 0;
+ } else if (format == 6) {
+ uint32 first = ttUSHORT(data + index_map + 6);
+ uint32 count = ttUSHORT(data + index_map + 8);
+ if ((uint32) unicode_codepoint >= first && (uint32) unicode_codepoint < first+count)
+ return ttUSHORT(data + index_map + 10 + (unicode_codepoint - first)*2);
+ return 0;
+ } else if (format == 2) {
+ assert(0); // @TODO: high-byte mapping for japanese/chinese/korean
+ return 0;
+ } else if (format == 4) { // standard mapping for windows fonts: binary search collection of ranges
+ ushort segcount = ttUSHORT(data+index_map+6) >> 1;
+ ushort searchRange = ttUSHORT(data+index_map+8) >> 1;
+ ushort entrySelector = ttUSHORT(data+index_map+10);
+ ushort rangeShift = ttUSHORT(data+index_map+12) >> 1;
+
+ // do a binary search of the segments
+ uint32 endCount = index_map + 14;
+ uint32 search = endCount;
+
+ if (unicode_codepoint > 0xffff)
+ return 0;
+
+ // they lie from endCount .. endCount + segCount
+ // but searchRange is the nearest power of two, so...
+ if (unicode_codepoint >= ttUSHORT(data + search + rangeShift*2))
+ search += rangeShift*2;
+
+ // now decrement to bias correctly to find smallest
+ search -= 2;
+ while (entrySelector) {
+ ushort end;
+ searchRange >>= 1;
+ end = ttUSHORT(data + search + searchRange*2);
+ if (unicode_codepoint > end)
+ search += searchRange*2;
+ --entrySelector;
+ }
+ search += 2;
+
+ {
+ ushort offset, start;
+ ushort item = (ushort) ((search - endCount) >> 1);
+
+ assert(unicode_codepoint <= ttUSHORT(data + endCount + 2*item));
+ start = ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item);
+ if (unicode_codepoint < start)
+ return 0;
+
+ offset = ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item);
+ if (offset == 0)
+ return (ushort) (unicode_codepoint + ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item));
+
+ return ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item);
+ }
+ } else if (format == 12 || format == 13) {
+ uint32 ngroups = ttULONG(data+index_map+12);
+ int32 low,high;
+ low = 0; high = (int32)ngroups;
+ // Binary search the right group.
+ while (low < high) {
+ int32 mid = low + ((high-low) >> 1); // rounds down, so low <= mid < high
+ uint32 start_char = ttULONG(data+index_map+16+mid*12);
+ uint32 end_char = ttULONG(data+index_map+16+mid*12+4);
+ if ((uint32) unicode_codepoint < start_char)
+ high = mid;
+ else if ((uint32) unicode_codepoint > end_char)
+ low = mid+1;
+ else {
+ uint32 start_glyph = ttULONG(data+index_map+16+mid*12+8);
+ if (format == 12)
+ return start_glyph + unicode_codepoint-start_char;
+ else // format == 13
+ return start_glyph;
+ }
+ }
+ return 0; // not found
+ }
+ // @TODO
+ assert(0);
+ return 0;
+}
+
+int
+font·code_shape(font·Info *info, int unicode_codepoint, font·Vertex **vertices)
+{
+ return font·glyph_shape(info, font·glyph_index(info, unicode_codepoint), vertices);
+}
+
+static
+void
+setvertex(font·Vertex *v, uchar type, int32 x, int32 y, int32 cx, int32 cy)
+{
+ v->type = type;
+ v->x = (short) x;
+ v->y = (short) y;
+ v->cx = (short) cx;
+ v->cy = (short) cy;
+}
+
+static
+int
+glyph_offset(const font·Info *info, int glyph_index)
+{
+ int g1,g2;
+
+ assert(!info->cff.size);
+
+ if (glyph_index >= info->numglyphs) return -1; // glyph index out of range
+ if (info->indexToLocFormat >= 2) return -1; // unknown index->glyph map format
+
+ if (info->indexToLocFormat == 0) {
+ g1 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2) * 2;
+ g2 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2 + 2) * 2;
+ } else {
+ g1 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4);
+ g2 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4 + 4);
+ }
+
+ return g1==g2 ? -1 : g1; // if length is 0, return -1
+}
+
+static int glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1);
+
+int
+font·glyph_box(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1)
+{
+ if (info->cff.size) {
+ glyph_info_t2(info, glyph_index, x0, y0, x1, y1);
+ } else {
+ int g = glyph_offset(info, glyph_index);
+ if (g < 0) return 0;
+
+ if (x0) *x0 = ttSHORT(info->data + g + 2);
+ if (y0) *y0 = ttSHORT(info->data + g + 4);
+ if (x1) *x1 = ttSHORT(info->data + g + 6);
+ if (y1) *y1 = ttSHORT(info->data + g + 8);
+ }
+ return 1;
+}
+
+int
+font·code_box(font·Info *info, int codepoint, int *x0, int *y0, int *x1, int *y1)
+{
+ return font·glyph_box(info, font·glyph_index(info,codepoint), x0,y0,x1,y1);
+}
+
+int
+font·glyph_empty(font·Info *info, int glyph_index)
+{
+ short numberOfContours;
+ int g;
+ if (info->cff.size)
+ return glyph_info_t2(info, glyph_index, nil, nil, nil, nil) == 0;
+ g = glyph_offset(info, glyph_index);
+ if (g < 0) return 1;
+ numberOfContours = ttSHORT(info->data + g);
+ return numberOfContours == 0;
+}
+
+static
+int
+close_shape(font·Vertex *vertices, int num_vertices, int was_off, int start_off,
+ int32 sx, int32 sy, int32 scx, int32 scy, int32 cx, int32 cy)
+{
+ if (start_off) {
+ if (was_off)
+ setvertex(&vertices[num_vertices++], font·Vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy);
+ setvertex(&vertices[num_vertices++], font·Vcurve, sx,sy,scx,scy);
+ } else {
+ if (was_off)
+ setvertex(&vertices[num_vertices++], font·Vcurve,sx,sy,cx,cy);
+ else
+ setvertex(&vertices[num_vertices++], font·Vline,sx,sy,0,0);
+ }
+ return num_vertices;
+}
+
+static
+int
+glyph_shape_tt(font·Info *info, int glyph_index, font·Vertex **pvertices)
+{
+ short numberOfContours;
+ uchar *endPtsOfContours;
+ uchar *data = info->data;
+ font·Vertex *vertices=0;
+ int num_vertices=0;
+ int g = glyph_offset(info, glyph_index);
+
+ *pvertices = nil;
+
+ if (g < 0) return 0;
+
+ numberOfContours = ttSHORT(data + g);
+
+ if (numberOfContours > 0) {
+ uchar flags=0,flagcount;
+ int32 ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0;
+ int32 x,y,cx,cy,sx,sy, scx,scy;
+ uchar *points;
+ endPtsOfContours = (data + g + 10);
+ ins = ttUSHORT(data + g + 10 + numberOfContours * 2);
+ points = data + g + 10 + numberOfContours * 2 + 2 + ins;
+
+ n = 1+ttUSHORT(endPtsOfContours + numberOfContours*2-2);
+
+ m = n + 2*numberOfContours; // a loose bound on how many vertices we might need
+ vertices = malloc(m * sizeof(vertices[0]));
+ if (vertices == 0)
+ return 0;
+
+ next_move = 0;
+ flagcount=0;
+
+ // in first pass, we load uninterpreted data into the allocated array
+ // above, shifted to the end of the array so we won't overwrite it when
+ // we create our final data starting from the front
+
+ off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated
+
+ // first load flags
+
+ for (i=0; i < n; ++i) {
+ if (flagcount == 0) {
+ flags = *points++;
+ if (flags & 8)
+ flagcount = *points++;
+ } else
+ --flagcount;
+ vertices[off+i].type = flags;
+ }
+
+ // now load x coordinates
+ x=0;
+ for (i=0; i < n; ++i) {
+ flags = vertices[off+i].type;
+ if (flags & 2) {
+ short dx = *points++;
+ x += (flags & 16) ? dx : -dx; // ???
+ } else {
+ if (!(flags & 16)) {
+ x = x + (short) (points[0]*256 + points[1]);
+ points += 2;
+ }
+ }
+ vertices[off+i].x = (short) x;
+ }
+
+ // now load y coordinates
+ y=0;
+ for (i=0; i < n; ++i) {
+ flags = vertices[off+i].type;
+ if (flags & 4) {
+ short dy = *points++;
+ y += (flags & 32) ? dy : -dy; // ???
+ } else {
+ if (!(flags & 32)) {
+ y = y + (short) (points[0]*256 + points[1]);
+ points += 2;
+ }
+ }
+ vertices[off+i].y = (short) y;
+ }
+
+ // now convert them to our format
+ num_vertices=0;
+ sx = sy = cx = cy = scx = scy = 0;
+ for (i=0; i < n; ++i) {
+ flags = vertices[off+i].type;
+ x = (short) vertices[off+i].x;
+ y = (short) vertices[off+i].y;
+
+ if (next_move == i) {
+ if (i != 0)
+ num_vertices = close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
+
+ // now start the new one
+ start_off = !(flags & 1);
+ if (start_off) {
+ // if we start off with an off-curve point, then when we need to find a point on the curve
+ // where we can start, and we need to save some state for when we wraparound.
+ scx = x;
+ scy = y;
+ if (!(vertices[off+i+1].type & 1)) {
+ // next point is also a curve point, so interpolate an on-point curve
+ sx = (x + (int32) vertices[off+i+1].x) >> 1;
+ sy = (y + (int32) vertices[off+i+1].y) >> 1;
+ } else {
+ // otherwise just use the next point as our start point
+ sx = (int32) vertices[off+i+1].x;
+ sy = (int32) vertices[off+i+1].y;
+ ++i; // we're using point i+1 as the starting point, so skip it
+ }
+ } else {
+ sx = x;
+ sy = y;
+ }
+ setvertex(&vertices[num_vertices++], font·Vmove,sx,sy,0,0);
+ was_off = 0;
+ next_move = 1 + ttUSHORT(endPtsOfContours+j*2);
+ ++j;
+ } else {
+ if (!(flags & 1)) { // if it's a curve
+ if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint
+ setvertex(&vertices[num_vertices++], font·Vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy);
+ cx = x;
+ cy = y;
+ was_off = 1;
+ } else {
+ if (was_off)
+ setvertex(&vertices[num_vertices++], font·Vcurve, x,y, cx, cy);
+ else
+ setvertex(&vertices[num_vertices++], font·Vline, x,y,0,0);
+ was_off = 0;
+ }
+ }
+ }
+ num_vertices = close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
+ } else if (numberOfContours < 0) {
+ // Compound shapes.
+ int more = 1;
+ uchar *comp = data + g + 10;
+ num_vertices = 0;
+ vertices = 0;
+ while (more) {
+ ushort flags, gidx;
+ int comp_num_verts = 0, i;
+ font·Vertex *comp_verts = 0, *tmp = 0;
+ float mtx[6] = {1,0,0,1,0,0}, m, n;
+
+ flags = ttSHORT(comp); comp+=2;
+ gidx = ttSHORT(comp); comp+=2;
+
+ if (flags & 2) { // XY values
+ if (flags & 1) { // shorts
+ mtx[4] = ttSHORT(comp); comp+=2;
+ mtx[5] = ttSHORT(comp); comp+=2;
+ } else {
+ mtx[4] = ttCHAR(comp); comp+=1;
+ mtx[5] = ttCHAR(comp); comp+=1;
+ }
+ }
+ else {
+ // @TODO handle matching point
+ assert(0);
+ }
+ if (flags & (1<<3)) { // WE_HAVE_A_SCALE
+ mtx[0] = mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = mtx[2] = 0;
+ } else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE
+ mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = mtx[2] = 0;
+ mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
+ } else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO
+ mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[1] = ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[2] = ttSHORT(comp)/16384.0f; comp+=2;
+ mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
+ }
+
+ // Find transformation scales.
+ m = (float) sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]);
+ n = (float) sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]);
+
+ // Get indexed glyph.
+ comp_num_verts = font·glyph_shape(info, gidx, &comp_verts);
+ if (comp_num_verts > 0) {
+ // Transform vertices.
+ for (i = 0; i < comp_num_verts; ++i) {
+ font·Vertex* v = &comp_verts[i];
+ short x,y;
+ x=v->x; y=v->y;
+ v->x = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
+ v->y = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
+ x=v->cx; y=v->cy;
+ v->cx = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
+ v->cy = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
+ }
+ // Append vertices.
+ tmp = malloc((num_vertices+comp_num_verts)*sizeof(font·Vertex));
+ if (!tmp) {
+ if (vertices) free(vertices);
+ if (comp_verts) free(comp_verts);
+ return 0;
+ }
+ if (num_vertices > 0)
+ memcpy(tmp, vertices, num_vertices*sizeof(font·Vertex));
+
+ memcpy(tmp+num_vertices, comp_verts, comp_num_verts*sizeof(font·Vertex));
+
+ if (vertices)
+ free(vertices);
+
+ vertices = tmp;
+ free(comp_verts);
+ num_vertices += comp_num_verts;
+ }
+ // More components ?
+ more = flags & (1<<5);
+ }
+ } else {
+ // numberOfCounters == 0, do nothing
+ }
+
+ *pvertices = vertices;
+ return num_vertices;
+}
+
+typedef struct
+{
+ int bounds;
+ int started;
+ float first_x, first_y;
+ float x, y;
+ int32 min_x, max_x, min_y, max_y;
+
+ font·Vertex *pvertices;
+ int num_vertices;
+} csctx;
+
+#define CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, nil, 0}
+
+static void track_vertex(csctx *c, int32 x, int32 y)
+{
+ if (x > c->max_x || !c->started) c->max_x = x;
+ if (y > c->max_y || !c->started) c->max_y = y;
+ if (x < c->min_x || !c->started) c->min_x = x;
+ if (y < c->min_y || !c->started) c->min_y = y;
+ c->started = 1;
+}
+
+static void csctx_v(csctx *c, uchar type, int32 x, int32 y, int32 cx, int32 cy, int32 cx1, int32 cy1)
+{
+ if (c->bounds) {
+ track_vertex(c, x, y);
+ if (type == font·Vcubic) {
+ track_vertex(c, cx, cy);
+ track_vertex(c, cx1, cy1);
+ }
+ } else {
+ setvertex(&c->pvertices[c->num_vertices], type, x, y, cx, cy);
+ c->pvertices[c->num_vertices].cx1 = (short) cx1;
+ c->pvertices[c->num_vertices].cy1 = (short) cy1;
+ }
+ c->num_vertices++;
+}
+
+static void csctx_close_shape(csctx *ctx)
+{
+ if (ctx->first_x != ctx->x || ctx->first_y != ctx->y)
+ csctx_v(ctx, font·Vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0);
+}
+
+static void csctx_rmove_to(csctx *ctx, float dx, float dy)
+{
+ csctx_close_shape(ctx);
+ ctx->first_x = ctx->x = ctx->x + dx;
+ ctx->first_y = ctx->y = ctx->y + dy;
+ csctx_v(ctx, font·Vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0);
+}
+
+static void csctx_rline_to(csctx *ctx, float dx, float dy)
+{
+ ctx->x += dx;
+ ctx->y += dy;
+ csctx_v(ctx, font·Vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0);
+}
+
+static void csctx_rccurve_to(csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3)
+{
+ float cx1 = ctx->x + dx1;
+ float cy1 = ctx->y + dy1;
+ float cx2 = cx1 + dx2;
+ float cy2 = cy1 + dy2;
+ ctx->x = cx2 + dx3;
+ ctx->y = cy2 + dy3;
+ csctx_v(ctx, font·Vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2);
+}
+
+static Buffer get_subr(Buffer idx, int n)
+{
+ int count = cff_index_count(&idx);
+ int bias = 107;
+ if (count >= 33900)
+ bias = 32768;
+ else if (count >= 1240)
+ bias = 1131;
+ n += bias;
+ if (n < 0 || n >= count)
+ return makebuf(nil, 0);
+ return cff_index_get(idx, n);
+}
+
+static Buffer cid_get_glyph_subrs(const font·Info *info, int glyph_index)
+{
+ Buffer fdselect = info->fdselect;
+ int nranges, start, end, v, fmt, fdselector = -1, i;
+
+ seek(&fdselect, 0);
+ fmt = getbyte(&fdselect);
+ if (fmt == 0) {
+ // untested
+ skip(&fdselect, glyph_index);
+ fdselector = getbyte(&fdselect);
+ } else if (fmt == 3) {
+ nranges = getshort(&fdselect);
+ start = getshort(&fdselect);
+ for (i = 0; i < nranges; i++) {
+ v = getbyte(&fdselect);
+ end = getshort(&fdselect);
+ if (glyph_index >= start && glyph_index < end) {
+ fdselector = v;
+ break;
+ }
+ start = end;
+ }
+ }
+ if (fdselector == -1) makebuf(nil, 0);
+ return get_subrs(info->cff, cff_index_get(info->fontdicts, fdselector));
+}
+
+static
+int
+run_charstring(font·Info *info, int glyph_index, csctx *c)
+{
+ int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0;
+ int has_subrs = 0, clear_stack;
+ float s[48];
+ Buffer subr_stack[10], subrs = info->subrs, b;
+ float f;
+
+#define STBTT__CSERR(s) (0)
+
+ // this currently ignores the initial width value, which isn't needed if we have hmtx
+ b = cff_index_get(info->charstrings, glyph_index);
+ while (b.cursor < b.size) {
+ i = 0;
+ clear_stack = 1;
+ b0 = getbyte(&b);
+ switch (b0) {
+ // @TODO implement hinting
+ case 0x13: // hintmask
+ case 0x14: // cntrmask
+ if (in_header)
+ maskbits += (sp / 2); // implicit "vstem"
+ in_header = 0;
+ skip(&b, (maskbits + 7) / 8);
+ break;
+
+ case 0x01: // hstem
+ case 0x03: // vstem
+ case 0x12: // hstemhm
+ case 0x17: // vstemhm
+ maskbits += (sp / 2);
+ break;
+
+ case 0x15: // rmoveto
+ in_header = 0;
+ if (sp < 2) return STBTT__CSERR("rmoveto stack");
+ csctx_rmove_to(c, s[sp-2], s[sp-1]);
+ break;
+ case 0x04: // vmoveto
+ in_header = 0;
+ if (sp < 1) return STBTT__CSERR("vmoveto stack");
+ csctx_rmove_to(c, 0, s[sp-1]);
+ break;
+ case 0x16: // hmoveto
+ in_header = 0;
+ if (sp < 1) return STBTT__CSERR("hmoveto stack");
+ csctx_rmove_to(c, s[sp-1], 0);
+ break;
+
+ case 0x05: // rlineto
+ if (sp < 2) return STBTT__CSERR("rlineto stack");
+ for (; i + 1 < sp; i += 2)
+ csctx_rline_to(c, s[i], s[i+1]);
+ break;
+
+ // hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical
+ // starting from a different place.
+
+ case 0x07: // vlineto
+ if (sp < 1) return STBTT__CSERR("vlineto stack");
+ goto vlineto;
+ case 0x06: // hlineto
+ if (sp < 1) return STBTT__CSERR("hlineto stack");
+ for (;;) {
+ if (i >= sp) break;
+ csctx_rline_to(c, s[i], 0);
+ i++;
+ vlineto:
+ if (i >= sp) break;
+ csctx_rline_to(c, 0, s[i]);
+ i++;
+ }
+ break;
+
+ case 0x1F: // hvcurveto
+ if (sp < 4) return STBTT__CSERR("hvcurveto stack");
+ goto hvcurveto;
+ case 0x1E: // vhcurveto
+ if (sp < 4) return STBTT__CSERR("vhcurveto stack");
+ for (;;) {
+ if (i + 3 >= sp) break;
+ csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f);
+ i += 4;
+ hvcurveto:
+ if (i + 3 >= sp) break;
+ csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]);
+ i += 4;
+ }
+ break;
+
+ case 0x08: // rrcurveto
+ if (sp < 6) return STBTT__CSERR("rcurveline stack");
+ for (; i + 5 < sp; i += 6)
+ csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
+ break;
+
+ case 0x18: // rcurveline
+ if (sp < 8) return STBTT__CSERR("rcurveline stack");
+ for (; i + 5 < sp - 2; i += 6)
+ csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
+ if (i + 1 >= sp) return STBTT__CSERR("rcurveline stack");
+ csctx_rline_to(c, s[i], s[i+1]);
+ break;
+
+ case 0x19: // rlinecurve
+ if (sp < 8) return STBTT__CSERR("rlinecurve stack");
+ for (; i + 1 < sp - 6; i += 2)
+ csctx_rline_to(c, s[i], s[i+1]);
+ if (i + 5 >= sp) return STBTT__CSERR("rlinecurve stack");
+ csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
+ break;
+
+ case 0x1A: // vvcurveto
+ case 0x1B: // hhcurveto
+ if (sp < 4) return STBTT__CSERR("(vv|hh)curveto stack");
+ f = 0.0;
+ if (sp & 1) { f = s[i]; i++; }
+ for (; i + 3 < sp; i += 4) {
+ if (b0 == 0x1B)
+ csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0);
+ else
+ csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]);
+ f = 0.0;
+ }
+ break;
+
+ case 0x0A: // callsubr
+ if (!has_subrs) {
+ if (info->fdselect.size)
+ subrs = cid_get_glyph_subrs(info, glyph_index);
+ has_subrs = 1;
+ }
+ // fallthrough
+ case 0x1D: // callgsubr
+ if (sp < 1) return STBTT__CSERR("call(g|)subr stack");
+ v = (int) s[--sp];
+ if (subr_stack_height >= 10) return STBTT__CSERR("recursion limit");
+ subr_stack[subr_stack_height++] = b;
+ b = get_subr(b0 == 0x0A ? subrs : info->gsubrs, v);
+ if (b.size == 0) return STBTT__CSERR("subr not found");
+ b.cursor = 0;
+ clear_stack = 0;
+ break;
+
+ case 0x0B: // return
+ if (subr_stack_height <= 0) return STBTT__CSERR("return outside subr");
+ b = subr_stack[--subr_stack_height];
+ clear_stack = 0;
+ break;
+
+ case 0x0E: // endchar
+ csctx_close_shape(c);
+ return 1;
+
+ case 0x0C: { // two-byte escape
+ float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6;
+ float dx, dy;
+ int b1 = getbyte(&b);
+ switch (b1) {
+ // @TODO These "flex" implementations ignore the flex-depth and resolution,
+ // and always draw beziers.
+ case 0x22: // hflex
+ if (sp < 7) return STBTT__CSERR("hflex stack");
+ dx1 = s[0];
+ dx2 = s[1];
+ dy2 = s[2];
+ dx3 = s[3];
+ dx4 = s[4];
+ dx5 = s[5];
+ dx6 = s[6];
+ csctx_rccurve_to(c, dx1, 0, dx2, dy2, dx3, 0);
+ csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0);
+ break;
+
+ case 0x23: // flex
+ if (sp < 13) return STBTT__CSERR("flex stack");
+ dx1 = s[0];
+ dy1 = s[1];
+ dx2 = s[2];
+ dy2 = s[3];
+ dx3 = s[4];
+ dy3 = s[5];
+ dx4 = s[6];
+ dy4 = s[7];
+ dx5 = s[8];
+ dy5 = s[9];
+ dx6 = s[10];
+ dy6 = s[11];
+ //fd is s[12]
+ csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3);
+ csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6);
+ break;
+
+ case 0x24: // hflex1
+ if (sp < 9) return STBTT__CSERR("hflex1 stack");
+ dx1 = s[0];
+ dy1 = s[1];
+ dx2 = s[2];
+ dy2 = s[3];
+ dx3 = s[4];
+ dx4 = s[5];
+ dx5 = s[6];
+ dy5 = s[7];
+ dx6 = s[8];
+ csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0);
+ csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5));
+ break;
+
+ case 0x25: // flex1
+ if (sp < 11) return STBTT__CSERR("flex1 stack");
+ dx1 = s[0];
+ dy1 = s[1];
+ dx2 = s[2];
+ dy2 = s[3];
+ dx3 = s[4];
+ dy3 = s[5];
+ dx4 = s[6];
+ dy4 = s[7];
+ dx5 = s[8];
+ dy5 = s[9];
+ dx6 = dy6 = s[10];
+ dx = dx1+dx2+dx3+dx4+dx5;
+ dy = dy1+dy2+dy3+dy4+dy5;
+ if (fabs(dx) > fabs(dy))
+ dy6 = -dy;
+ else
+ dx6 = -dx;
+ csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3);
+ csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6);
+ break;
+
+ default:
+ return STBTT__CSERR("unimplemented");
+ }
+ } break;
+
+ default:
+ if (b0 != 255 && b0 != 28 && (b0 < 32 || b0 > 254))
+ return STBTT__CSERR("reserved operator");
+
+ // push immediate
+ if (b0 == 255) {
+ f = (float)(int32)getint(&b) / 0x10000;
+ } else {
+ skip(&b, -1);
+ f = (float)(short)cff_int(&b);
+ }
+ if (sp >= 48) return STBTT__CSERR("push stack overflow");
+ s[sp++] = f;
+ clear_stack = 0;
+ break;
+ }
+ if (clear_stack) sp = 0;
+ }
+ return STBTT__CSERR("no endchar");
+
+#undef STBTT__CSERR
+}
+
+static int glyph_shape_t2(font·Info *info, int glyph_index, font·Vertex **pvertices)
+{
+ // runs the charstring twice, once to count and once to output (to avoid realloc)
+ csctx count_ctx = CSCTX_INIT(1);
+ csctx output_ctx = CSCTX_INIT(0);
+ if (run_charstring(info, glyph_index, &count_ctx)) {
+ *pvertices = malloc(count_ctx.num_vertices*sizeof(font·Vertex));
+ output_ctx.pvertices = *pvertices;
+ if (run_charstring(info, glyph_index, &output_ctx)) {
+ assert(output_ctx.num_vertices == count_ctx.num_vertices);
+ return output_ctx.num_vertices;
+ }
+ }
+ *pvertices = nil;
+ return 0;
+}
+
+static
+int
+glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1)
+{
+ csctx c = CSCTX_INIT(1);
+ int r = run_charstring(info, glyph_index, &c);
+ if (x0) *x0 = r ? c.min_x : 0;
+ if (y0) *y0 = r ? c.min_y : 0;
+ if (x1) *x1 = r ? c.max_x : 0;
+ if (y1) *y1 = r ? c.max_y : 0;
+ return r ? c.num_vertices : 0;
+}
+
+int
+font·glyph_shape(font·Info *info, int glyph_index, font·Vertex **pvertices)
+{
+ if (!info->cff.size)
+ return glyph_shape_tt(info, glyph_index, pvertices);
+ else
+ return glyph_shape_t2(info, glyph_index, pvertices);
+}
+
+void
+font·glyph_hmetrics(font·Info *info, int glyph_index, int *advanceWidth, int *leftSideBearing)
+{
+ ushort numOfLongHorMetrics = ttUSHORT(info->data+info->hhea + 34);
+ if (glyph_index < numOfLongHorMetrics) {
+ if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*glyph_index);
+ if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*glyph_index + 2);
+ } else {
+ if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*(numOfLongHorMetrics-1));
+ if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics));
+ }
+}
+
+int
+font·kerntablen(font·Info *info)
+{
+ uchar *data = info->data + info->kern;
+
+ // we only look at the first table. it must be 'horizontal' and format 0.
+ if (!info->kern)
+ return 0;
+ if (ttUSHORT(data+2) < 1) // number of tables, need at least 1
+ return 0;
+ if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format
+ return 0;
+
+ return ttUSHORT(data+10);
+}
+
+int
+font·kerntab(font·Info *info, font·TabElt* table, int table_length)
+{
+ uchar *data = info->data + info->kern;
+ int k, length;
+
+ // we only look at the first table. it must be 'horizontal' and format 0.
+ if (!info->kern)
+ return 0;
+ if (ttUSHORT(data+2) < 1) // number of tables, need at least 1
+ return 0;
+ if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format
+ return 0;
+
+ length = ttUSHORT(data+10);
+ if (table_length < length)
+ length = table_length;
+
+ for (k = 0; k < length; k++)
+ {
+ table[k].glyph1 = ttUSHORT(data+18+(k*6));
+ table[k].glyph2 = ttUSHORT(data+20+(k*6));
+ table[k].advance = ttSHORT(data+22+(k*6));
+ }
+
+ return length;
+}
+
+static
+int
+glyph_kernadvance(const font·Info *info, int glyph1, int glyph2)
+{
+ uchar *data = info->data + info->kern;
+ uint32 needle, straw;
+ int l, r, m;
+
+ // we only look at the first table. it must be 'horizontal' and format 0.
+ if (!info->kern)
+ return 0;
+ if (ttUSHORT(data+2) < 1) // number of tables, need at least 1
+ return 0;
+ if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format
+ return 0;
+
+ l = 0;
+ r = ttUSHORT(data+10) - 1;
+ needle = glyph1 << 16 | glyph2;
+ while (l <= r) {
+ m = (l + r) >> 1;
+ straw = ttULONG(data+18+(m*6)); // note: unaligned read
+ if (needle < straw)
+ r = m - 1;
+ else if (needle > straw)
+ l = m + 1;
+ else
+ return ttSHORT(data+22+(m*6));
+ }
+ return 0;
+}
+
+static
+int32
+coverage_index(uchar *coverageTable, int glyph)
+{
+ ushort coverageFormat = ttUSHORT(coverageTable);
+ switch(coverageFormat) {
+ case 1: {
+ ushort glyphCount = ttUSHORT(coverageTable + 2);
+
+ // Binary search.
+ int32 l=0, r=glyphCount-1, m;
+ int straw, needle=glyph;
+ while (l <= r) {
+ uchar *glyphArray = coverageTable + 4;
+ ushort glyphID;
+ m = (l + r) >> 1;
+ glyphID = ttUSHORT(glyphArray + 2 * m);
+ straw = glyphID;
+ if (needle < straw)
+ r = m - 1;
+ else if (needle > straw)
+ l = m + 1;
+ else {
+ return m;
+ }
+ }
+ } break;
+
+ case 2: {
+ ushort rangeCount = ttUSHORT(coverageTable + 2);
+ uchar *rangeArray = coverageTable + 4;
+
+ // Binary search.
+ int32 l=0, r=rangeCount-1, m;
+ int strawStart, strawEnd, needle=glyph;
+ while (l <= r) {
+ uchar *rangeRecord;
+ m = (l + r) >> 1;
+ rangeRecord = rangeArray + 6 * m;
+ strawStart = ttUSHORT(rangeRecord);
+ strawEnd = ttUSHORT(rangeRecord + 2);
+ if (needle < strawStart)
+ r = m - 1;
+ else if (needle > strawEnd)
+ l = m + 1;
+ else {
+ ushort startCoverageIndex = ttUSHORT(rangeRecord + 4);
+ return startCoverageIndex + glyph - strawStart;
+ }
+ }
+ } break;
+
+ default: {
+ // There are no other cases.
+ assert(0);
+ } break;
+ }
+
+ return -1;
+}
+
+static
+int32
+glyph_class(uchar *classDefTable, int glyph)
+{
+ ushort classDefFormat = ttUSHORT(classDefTable);
+ switch(classDefFormat)
+ {
+ case 1: {
+ ushort startGlyphID = ttUSHORT(classDefTable + 2);
+ ushort glyphCount = ttUSHORT(classDefTable + 4);
+ uchar *classDef1ValueArray = classDefTable + 6;
+
+ if (glyph >= startGlyphID && glyph < startGlyphID + glyphCount)
+ return (int32)ttUSHORT(classDef1ValueArray + 2 * (glyph - startGlyphID));
+
+ classDefTable = classDef1ValueArray + 2 * glyphCount;
+ } break;
+
+ case 2: {
+ ushort classRangeCount = ttUSHORT(classDefTable + 2);
+ uchar *classRangeRecords = classDefTable + 4;
+
+ // Binary search.
+ int32 l=0, r=classRangeCount-1, m;
+ int strawStart, strawEnd, needle=glyph;
+ while (l <= r) {
+ uchar *classRangeRecord;
+ m = (l + r) >> 1;
+ classRangeRecord = classRangeRecords + 6 * m;
+ strawStart = ttUSHORT(classRangeRecord);
+ strawEnd = ttUSHORT(classRangeRecord + 2);
+ if (needle < strawStart)
+ r = m - 1;
+ else if (needle > strawEnd)
+ l = m + 1;
+ else
+ return (int32)ttUSHORT(classRangeRecord + 4);
+ }
+
+ classDefTable = classRangeRecords + 6 * classRangeCount;
+ } break;
+
+ default: {
+ // There are no other cases.
+ assert(0);
+ } break;
+ }
+
+ return -1;
+}
+
+static
+int32
+glyph_gposadvance(const font·Info *info, int glyph1, int glyph2)
+{
+ ushort lookupListOffset;
+ uchar *lookupList;
+ ushort lookupCount;
+ uchar *data;
+ int32 i;
+
+ if (!info->gpos) return 0;
+
+ data = info->data + info->gpos;
+
+ if (ttUSHORT(data+0) != 1) return 0; // Major version 1
+ if (ttUSHORT(data+2) != 0) return 0; // Minor version 0
+
+ lookupListOffset = ttUSHORT(data+8);
+ lookupList = data + lookupListOffset;
+ lookupCount = ttUSHORT(lookupList);
+
+ for (i=0; i<lookupCount; ++i) {
+ ushort lookupOffset = ttUSHORT(lookupList + 2 + 2 * i);
+ uchar *lookupTable = lookupList + lookupOffset;
+
+ ushort lookupType = ttUSHORT(lookupTable);
+ ushort subTableCount = ttUSHORT(lookupTable + 4);
+ uchar *subTableOffsets = lookupTable + 6;
+ switch(lookupType) {
+ case 2: { // Pair Adjustment Positioning Subtable
+ int32 sti;
+ for (sti=0; sti<subTableCount; sti++) {
+ ushort subtableOffset = ttUSHORT(subTableOffsets + 2 * sti);
+ uchar *table = lookupTable + subtableOffset;
+ ushort posFormat = ttUSHORT(table);
+ ushort coverageOffset = ttUSHORT(table + 2);
+ int32 coverageIndex = coverage_index(table + coverageOffset, glyph1);
+ if (coverageIndex == -1) continue;
+
+ switch (posFormat) {
+ case 1: {
+ int32 l, r, m;
+ int straw, needle;
+ ushort valueFormat1 = ttUSHORT(table + 4);
+ ushort valueFormat2 = ttUSHORT(table + 6);
+ int32 valueRecordPairSizeInBytes = 2;
+ ushort pairSetCount = ttUSHORT(table + 8);
+ ushort pairPosOffset = ttUSHORT(table + 10 + 2 * coverageIndex);
+ uchar *pairValueTable = table + pairPosOffset;
+ ushort pairValueCount = ttUSHORT(pairValueTable);
+ uchar *pairValueArray = pairValueTable + 2;
+ // TODO: Support more formats.
+ if (valueFormat1 != 4) return 0;
+ if (valueFormat2 != 0) return 0;
+
+ assert(coverageIndex < pairSetCount);
+
+ needle=glyph2;
+ r=pairValueCount-1;
+ l=0;
+
+ // Binary search.
+ while (l <= r) {
+ ushort secondGlyph;
+ uchar *pairValue;
+ m = (l + r) >> 1;
+ pairValue = pairValueArray + (2 + valueRecordPairSizeInBytes) * m;
+ secondGlyph = ttUSHORT(pairValue);
+ straw = secondGlyph;
+ if (needle < straw)
+ r = m - 1;
+ else if (needle > straw)
+ l = m + 1;
+ else {
+ short xAdvance = ttSHORT(pairValue + 2);
+ return xAdvance;
+ }
+ }
+ } break;
+
+ case 2: {
+ ushort valueFormat1 = ttUSHORT(table + 4);
+ ushort valueFormat2 = ttUSHORT(table + 6);
+
+ ushort classDef1Offset = ttUSHORT(table + 8);
+ ushort classDef2Offset = ttUSHORT(table + 10);
+ int glyph1class = glyph_class(table + classDef1Offset, glyph1);
+ int glyph2class = glyph_class(table + classDef2Offset, glyph2);
+
+ ushort class1Count = ttUSHORT(table + 12);
+ ushort class2Count = ttUSHORT(table + 14);
+ assert(glyph1class < class1Count);
+ assert(glyph2class < class2Count);
+
+ // TODO: Support more formats.
+ if (valueFormat1 != 4) return 0;
+ if (valueFormat2 != 0) return 0;
+
+ if (glyph1class >= 0 && glyph1class < class1Count && glyph2class >= 0 && glyph2class < class2Count) {
+ uchar *class1Records = table + 16;
+ uchar *class2Records = class1Records + 2 * (glyph1class * class2Count);
+ short xAdvance = ttSHORT(class2Records + 2 * glyph2class);
+ return xAdvance;
+ }
+ } break;
+
+ default: {
+ // There are no other cases.
+ assert(0);
+ break;
+ };
+ }
+ }
+ break;
+ };
+
+ default:
+ // TODO: Implement other stuff.
+ break;
+ }
+ }
+
+ return 0;
+}
+
+int
+font·glyph_kernadvance(font·Info *info, int g1, int g2)
+{
+ int xAdvance = 0;
+
+ if (info->gpos)
+ xAdvance += glyph_gposadvance(info, g1, g2);
+ else if (info->kern)
+ xAdvance += glyph_kernadvance(info, g1, g2);
+
+ return xAdvance;
+}
+
+int
+font·code_kernadvance(font·Info *info, int ch1, int ch2)
+{
+ if (!info->kern && !info->gpos) // if no kerning table, don't waste time looking up both codepoint->glyphs
+ return 0;
+ return font·glyph_kernadvance(info, font·glyph_index(info,ch1), font·glyph_index(info,ch2));
+}
+
+void
+font·code_hmetrics(font·Info *info, int codepoint, int *advanceWidth, int *lsb)
+{
+ font·glyph_hmetrics(info, font·glyph_index(info,codepoint), advanceWidth, lsb);
+}
+
+void
+font·vmetrics(font·Info *info, int *ascent, int *descent, int *lineGap)
+{
+ if (ascent ) *ascent = ttSHORT(info->data+info->hhea + 4);
+ if (descent) *descent = ttSHORT(info->data+info->hhea + 6);
+ if (lineGap) *lineGap = ttSHORT(info->data+info->hhea + 8);
+}
+
+void
+font·bbox(font·Info *info, int *x0, int *y0, int *x1, int *y1)
+{
+ *x0 = ttSHORT(info->data + info->head + 36);
+ *y0 = ttSHORT(info->data + info->head + 38);
+ *x1 = ttSHORT(info->data + info->head + 40);
+ *y1 = ttSHORT(info->data + info->head + 42);
+}
+
+float
+font·scaleheightto(font·Info *info, float height)
+{
+ int fheight = ttSHORT(info->data + info->hhea + 4) - ttSHORT(info->data + info->hhea + 6);
+ return (float) height / fheight;
+}
+
+float
+font·scaleheighttoem(font·Info *info, float pixels)
+{
+ int unitsPerEm = ttUSHORT(info->data + info->head + 18);
+ return pixels / unitsPerEm;
+}
+
+void
+font·freeshape(font·Info *info, font·Vertex *v)
+{
+ free(v);
+}
+
+static
+uchar *
+find_svg(const font·Info *info, int gl)
+{
+ int i;
+ uchar *data = info->data;
+ uchar *svg_doc_list = data + get_svg((font·Info *) info);
+
+ int numEntries = ttUSHORT(svg_doc_list);
+ uchar *svg_docs = svg_doc_list + 2;
+
+ for(i=0; i<numEntries; i++) {
+ uchar *svg_doc = svg_docs + (12 * i);
+ if ((gl >= ttUSHORT(svg_doc)) && (gl <= ttUSHORT(svg_doc + 2)))
+ return svg_doc;
+ }
+ return 0;
+}
+
+int
+font·glyph_svg(font·Info *info, int gl, char **svg)
+{
+ uchar *data = info->data;
+ uchar *svg_doc;
+
+ if (info->svg == 0)
+ return 0;
+
+ svg_doc = find_svg(info, gl);
+ if (svg_doc != nil) {
+ *svg = (char *) data + info->svg + ttULONG(svg_doc + 4);
+ return ttULONG(svg_doc + 8);
+ } else {
+ return 0;
+ }
+}
+
+int
+font·code_svg(font·Info *info, int unicode_codepoint, char **svg)
+{
+ return font·glyph_svg(info, font·glyph_index(info, unicode_codepoint), svg);
+}
+
+// -----------------------------------------------------------------------
+// antialiasing software rasterizer
+
+void
+font·glyph_bitmapbox_subpixel(font·Info *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ int x0=0,y0=0,x1,y1; // =0 suppresses compiler warning
+ if (!font·glyph_box(font, glyph, &x0,&y0,&x1,&y1)) {
+ // e.g. space character
+ if (ix0) *ix0 = 0;
+ if (iy0) *iy0 = 0;
+ if (ix1) *ix1 = 0;
+ if (iy1) *iy1 = 0;
+ } else {
+ // move to integral bboxes (treating pixels as little squares, what pixels get touched)?
+ if (ix0) *ix0 = (int)floor( x0 * scale_x + shift_x);
+ if (iy0) *iy0 = (int)floor(-y1 * scale_y + shift_y);
+ if (ix1) *ix1 = (int)ceil( x1 * scale_x + shift_x);
+ if (iy1) *iy1 = (int)ceil(-y0 * scale_y + shift_y);
+ }
+}
+
+void
+font·glyph_bitmapbox(font·Info *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ font·glyph_bitmapbox_subpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1);
+}
+
+void
+font·code_bitmapbox_subpixel(font·Info *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ font·glyph_bitmapbox_subpixel(font, font·glyph_index(font,codepoint), scale_x, scale_y,shift_x,shift_y, ix0,iy0,ix1,iy1);
+}
+
+void
+font·code_bitmapbox(font·Info *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1)
+{
+ font·code_bitmapbox_subpixel(font, codepoint, scale_x, scale_y,0.0f,0.0f, ix0,iy0,ix1,iy1);
+}
+
+// ------------------------------------------------------------------------
+// Rasterizer
+
+typedef struct hheap_chunk
+{
+ struct hheap_chunk *next;
+} hheap_chunk;
+
+typedef struct hheap
+{
+ struct hheap_chunk *head;
+ void *first_free;
+ int num_remaining_in_head_chunk;
+} hheap;
+
+static
+void *
+hheap_alloc(hheap *hh, size_t size, void *userdata)
+{
+ if (hh->first_free) {
+ void *p = hh->first_free;
+ hh->first_free = * (void **) p;
+ return p;
+ } else {
+ if (hh->num_remaining_in_head_chunk == 0) {
+ int count = (size < 32 ? 2000 : size < 128 ? 800 : 100);
+ hheap_chunk *c = malloc(sizeof(hheap_chunk) + size * count);
+ if (c == nil)
+ return nil;
+ c->next = hh->head;
+ hh->head = c;
+ hh->num_remaining_in_head_chunk = count;
+ }
+ --hh->num_remaining_in_head_chunk;
+ return (char *) (hh->head) + sizeof(hheap_chunk) + size * hh->num_remaining_in_head_chunk;
+ }
+}
+
+static
+void
+hheap_free(hheap *hh, void *p)
+{
+ *(void **) p = hh->first_free;
+ hh->first_free = p;
+}
+
+static
+void
+hheap_cleanup(hheap *hh, void *userdata)
+{
+ hheap_chunk *c = hh->head;
+ while (c) {
+ hheap_chunk *n = c->next;
+ free(c);
+ c = n;
+ }
+}
+
+static
+ActiveEdge *
+new_active(hheap *hh, Edge *e, int off_x, float start_point, void *userdata)
+{
+ ActiveEdge *z = (ActiveEdge *) hheap_alloc(hh, sizeof(*z), userdata);
+ float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
+ assert(z != nil);
+ //assert(e->y0 <= start_point);
+ if (!z) return z;
+ z->fdx = dxdy;
+ z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f;
+ z->fx = e->x0 + dxdy * (start_point - e->y0);
+ z->fx -= off_x;
+ z->direction = e->invert ? 1.0f : -1.0f;
+ z->sy = e->y0;
+ z->ey = e->y1;
+ z->next = 0;
+ return z;
+}
+
+// the edge passed in here does not cross the vertical line at x or the vertical line at x+1
+// (i.e. it has already been clipped to those)
+static
+void
+handle_clipped_edge(float *scanline, int x, ActiveEdge *e, float x0, float y0, float x1, float y1)
+{
+ if (y0 == y1) return;
+ assert(y0 < y1);
+ assert(e->sy <= e->ey);
+ if (y0 > e->ey) return;
+ if (y1 < e->sy) return;
+ if (y0 < e->sy) {
+ x0 += (x1-x0) * (e->sy - y0) / (y1-y0);
+ y0 = e->sy;
+ }
+ if (y1 > e->ey) {
+ x1 += (x1-x0) * (e->ey - y1) / (y1-y0);
+ y1 = e->ey;
+ }
+
+ if (x0 == x)
+ assert(x1 <= x+1);
+ else if (x0 == x+1)
+ assert(x1 >= x);
+ else if (x0 <= x)
+ assert(x1 <= x);
+ else if (x0 >= x+1)
+ assert(x1 >= x+1);
+ else
+ assert(x1 >= x && x1 <= x+1);
+
+ if (x0 <= x && x1 <= x)
+ scanline[x] += e->direction * (y1-y0);
+ else if (x0 >= x+1 && x1 >= x+1)
+ ;
+ else {
+ assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1);
+ scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); // coverage = 1 - average x position
+ }
+}
+
+static
+void
+fill_active_edges_new(float *scanline, float *scanline_fill, int len, ActiveEdge *e, float y_top)
+{
+ float y_bottom = y_top+1;
+
+ while (e) {
+ // brute force every pixel
+
+ // compute intersection points with top & bottom
+ assert(e->ey >= y_top);
+
+ if (e->fdx == 0) {
+ float x0 = e->fx;
+ if (x0 < len) {
+ if (x0 >= 0) {
+ handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom);
+ handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom);
+ } else {
+ handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom);
+ }
+ }
+ } else {
+ float x0 = e->fx;
+ float dx = e->fdx;
+ float xb = x0 + dx;
+ float x_top, x_bottom;
+ float sy0,sy1;
+ float dy = e->fdy;
+ assert(e->sy <= y_bottom && e->ey >= y_top);
+
+ // compute endpoints of line segment clipped to this scanline (if the
+ // line segment starts on this scanline. x0 is the intersection of the
+ // line with y_top, but that may be off the line segment.
+ if (e->sy > y_top) {
+ x_top = x0 + dx * (e->sy - y_top);
+ sy0 = e->sy;
+ } else {
+ x_top = x0;
+ sy0 = y_top;
+ }
+ if (e->ey < y_bottom) {
+ x_bottom = x0 + dx * (e->ey - y_top);
+ sy1 = e->ey;
+ } else {
+ x_bottom = xb;
+ sy1 = y_bottom;
+ }
+
+ if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len) {
+ // from here on, we don't have to range check x values
+
+ if ((int) x_top == (int) x_bottom) {
+ float height;
+ // simple case, only spans one pixel
+ int x = (int) x_top;
+ height = sy1 - sy0;
+ assert(x >= 0 && x < len);
+ scanline[x] += e->direction * (1-((x_top - x) + (x_bottom-x))/2) * height;
+ scanline_fill[x] += e->direction * height; // everything right of this pixel is filled
+ } else {
+ int x,x1,x2;
+ float y_crossing, step, sign, area;
+ // covers 2+ pixels
+ if (x_top > x_bottom) {
+ // flip scanline vertically; signed area is the same
+ float t;
+ sy0 = y_bottom - (sy0 - y_top);
+ sy1 = y_bottom - (sy1 - y_top);
+ t = sy0, sy0 = sy1, sy1 = t;
+ t = x_bottom, x_bottom = x_top, x_top = t;
+ dx = -dx;
+ dy = -dy;
+ t = x0, x0 = xb, xb = t;
+ }
+
+ x1 = (int) x_top;
+ x2 = (int) x_bottom;
+ // compute intersection with y axis at x1+1
+ y_crossing = (x1+1 - x0) * dy + y_top;
+
+ sign = e->direction;
+ // area of the rectangle covered from y0..y_crossing
+ area = sign * (y_crossing-sy0);
+ // area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing)
+ scanline[x1] += area * (1-((x_top - x1)+(x1+1-x1))/2);
+
+ step = sign * dy;
+ for (x = x1+1; x < x2; ++x) {
+ scanline[x] += area + step/2;
+ area += step;
+ }
+ y_crossing += dy * (x2 - (x1+1));
+
+ assert(fabs(area) <= 1.01f);
+
+ scanline[x2] += area + sign * (1-((x2-x2)+(x_bottom-x2))/2) * (sy1-y_crossing);
+
+ scanline_fill[x2] += sign * (sy1-sy0);
+ }
+ } else {
+ // if edge goes outside of box we're drawing, we require
+ // clipping logic. since this does not match the intended use
+ // of this library, we use a different, very slow brute
+ // force implementation
+ int x;
+ for (x=0; x < len; ++x) {
+ // cases:
+ //
+ // there can be up to two intersections with the pixel. any intersection
+ // with left or right edges can be handled by splitting into two (or three)
+ // regions. intersections with top & bottom do not necessitate case-wise logic.
+ //
+ // the old way of doing this found the intersections with the left & right edges,
+ // then used some simple logic to produce up to three segments in sorted order
+ // from top-to-bottom. however, this had a problem: if an x edge was epsilon
+ // across the x border, then the corresponding y position might not be distinct
+ // from the other y segment, and it might ignored as an empty segment. to avoid
+ // that, we need to explicitly produce segments based on x positions.
+
+ // rename variables to clearly-defined pairs
+ float y0 = y_top;
+ float x1 = (float) (x);
+ float x2 = (float) (x+1);
+ float x3 = xb;
+ float y3 = y_bottom;
+
+ // x = e->x + e->dx * (y-y_top)
+ // (y-y_top) = (x - e->x) / e->dx
+ // y = (x - e->x) / e->dx + y_top
+ float y1 = (x - x0) / dx + y_top;
+ float y2 = (x+1 - x0) / dx + y_top;
+
+ if (x0 < x1 && x3 > x2) { // three segments descending down-right
+ handle_clipped_edge(scanline,x,e, x0,y0, x1,y1);
+ handle_clipped_edge(scanline,x,e, x1,y1, x2,y2);
+ handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else if (x3 < x1 && x0 > x2) { // three segments descending down-left
+ handle_clipped_edge(scanline,x,e, x0,y0, x2,y2);
+ handle_clipped_edge(scanline,x,e, x2,y2, x1,y1);
+ handle_clipped_edge(scanline,x,e, x1,y1, x3,y3);
+ } else if (x0 < x1 && x3 > x1) { // two segments across x, down-right
+ handle_clipped_edge(scanline,x,e, x0,y0, x1,y1);
+ handle_clipped_edge(scanline,x,e, x1,y1, x3,y3);
+ } else if (x3 < x1 && x0 > x1) { // two segments across x, down-left
+ handle_clipped_edge(scanline,x,e, x0,y0, x1,y1);
+ handle_clipped_edge(scanline,x,e, x1,y1, x3,y3);
+ } else if (x0 < x2 && x3 > x2) { // two segments across x+1, down-right
+ handle_clipped_edge(scanline,x,e, x0,y0, x2,y2);
+ handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else if (x3 < x2 && x0 > x2) { // two segments across x+1, down-left
+ handle_clipped_edge(scanline,x,e, x0,y0, x2,y2);
+ handle_clipped_edge(scanline,x,e, x2,y2, x3,y3);
+ } else { // one segment
+ handle_clipped_edge(scanline,x,e, x0,y0, x3,y3);
+ }
+ }
+ }
+ }
+ e = e->next;
+ }
+}
+
+// directly AA rasterize edges w/o supersampling
+static
+void
+rasterize_sorted_edges(font·Bitmap *result, Edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata)
+{
+ hheap hh = { 0, 0, 0 };
+ ActiveEdge *active = nil;
+ int y,j=0, i;
+ float scanline_data[129], *scanline, *scanline2;
+
+ if (result->w > 64)
+ scanline = malloc((result->w*2+1) * sizeof(float));
+ else
+ scanline = scanline_data;
+
+ scanline2 = scanline + result->w;
+
+ y = off_y;
+ e[n].y0 = (float) (off_y + result->h) + 1;
+
+ while (j < result->h) {
+ // find center of pixel for this scanline
+ float scan_y_top = y + 0.0f;
+ float scan_y_bottom = y + 1.0f;
+ ActiveEdge **step = &active;
+
+ memset(scanline , 0, result->w*sizeof(scanline[0]));
+ memset(scanline2, 0, (result->w+1)*sizeof(scanline[0]));
+
+ // update all active edges;
+ // remove all active edges that terminate before the top of this scanline
+ while (*step) {
+ ActiveEdge * z = *step;
+ if (z->ey <= scan_y_top) {
+ *step = z->next; // delete from list
+ assert(z->direction);
+ z->direction = 0;
+ hheap_free(&hh, z);
+ } else {
+ step = &((*step)->next); // advance through list
+ }
+ }
+
+ // insert all edges that start before the bottom of this scanline
+ while (e->y0 <= scan_y_bottom) {
+ if (e->y0 != e->y1) {
+ ActiveEdge *z = new_active(&hh, e, off_x, scan_y_top, userdata);
+ if (z != nil) {
+ if (j == 0 && off_y != 0) {
+ if (z->ey < scan_y_top) {
+ // this can happen due to subpixel positioning and some kind of fp rounding error i think
+ z->ey = scan_y_top;
+ }
+ }
+ assert(z->ey >= scan_y_top); // if we get really unlucky a tiny bit of an edge can be out of bounds
+ // insert at front
+ z->next = active;
+ active = z;
+ }
+ }
+ ++e;
+ }
+
+ // now process all active edges
+ if (active)
+ fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top);
+
+ {
+ float sum = 0;
+ for (i=0; i < result->w; ++i) {
+ float k;
+ int m;
+ sum += scanline2[i];
+ k = scanline[i] + sum;
+ k = (float) fabs(k)*255 + 0.5f;
+ m = (int) k;
+ if (m > 255) m = 255;
+ result->pixels[j*result->stride + i] = (uchar) m;
+ }
+ }
+ // advance all the edges
+ step = &active;
+ while (*step) {
+ ActiveEdge *z = *step;
+ z->fx += z->fdx; // advance to position for current scanline
+ step = &((*step)->next); // advance through list
+ }
+
+ ++y;
+ ++j;
+ }
+
+ hheap_cleanup(&hh, userdata);
+
+ if (scanline != scanline_data)
+ free(scanline);
+}
+
+#define CMP_Y0(a,b) ((a)->y0 < (b)->y0)
+
+static
+void
+sort_edges_ins_sort(Edge *p, int n)
+{
+ int i,j;
+ for (i=1; i < n; ++i) {
+ Edge t = p[i], *a = &t;
+ j = i;
+ while (j > 0) {
+ Edge *b = &p[j-1];
+ int c = CMP_Y0(a,b);
+ if (!c) break;
+ p[j] = p[j-1];
+ --j;
+ }
+ if (i != j)
+ p[j] = t;
+ }
+}
+
+static
+void
+sort_edges_quicksort(Edge *p, int n)
+{
+ /* threshold for transitioning to insertion sort */
+ while (n > 12) {
+ Edge t;
+ int c01,c12,c,m,i,j;
+
+ /* compute median of three */
+ m = n >> 1;
+ c01 = CMP_Y0(&p[0],&p[m]);
+ c12 = CMP_Y0(&p[m],&p[n-1]);
+ /* if 0 >= mid >= end, or 0 < mid < end, then use mid */
+ if (c01 != c12) {
+ /* otherwise, we'll need to swap something else to middle */
+ int z;
+ c = CMP_Y0(&p[0],&p[n-1]);
+ /* 0>mid && mid<n: 0>n => n; 0<n => 0 */
+ /* 0<mid && mid>n: 0>n => 0; 0<n => n */
+ z = (c == c12) ? 0 : n-1;
+ t = p[z];
+ p[z] = p[m];
+ p[m] = t;
+ }
+ /* now p[m] is the median-of-three */
+ /* swap it to the beginning so it won't move around */
+ t = p[0];
+ p[0] = p[m];
+ p[m] = t;
+
+ /* partition loop */
+ i=1;
+ j=n-1;
+ for(;;) {
+ /* handling of equality is crucial here */
+ /* for sentinels & efficiency with duplicates */
+ for (;;++i) {
+ if (!CMP_Y0(&p[i], &p[0])) break;
+ }
+ for (;;--j) {
+ if (!CMP_Y0(&p[0], &p[j])) break;
+ }
+ /* make sure we haven't crossed */
+ if (i >= j) break;
+ t = p[i];
+ p[i] = p[j];
+ p[j] = t;
+
+ ++i;
+ --j;
+ }
+ /* recurse on smaller side, iterate on larger */
+ if (j < (n-i)) {
+ sort_edges_quicksort(p,j);
+ p = p+i;
+ n = n-i;
+ } else {
+ sort_edges_quicksort(p+i, n-i);
+ n = j;
+ }
+ }
+}
+
+static
+void
+sort_edges(Edge *p, int n)
+{
+ sort_edges_quicksort(p, n);
+ sort_edges_ins_sort(p, n);
+}
+
+static
+void
+rasterize(font·Bitmap *result, Point *pts, int *wcount, int windings, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert, void *userdata)
+{
+ float y_scale_inv = invert ? -scale_y : scale_y;
+ Edge *e;
+ int n,i,j,k,m;
+ int vsubsample = 1;
+ // vsubsample should divide 255 evenly; otherwise we won't reach full opacity
+
+ // now we have to blow out the windings into explicit edge lists
+ n = 0;
+ for (i=0; i < windings; ++i)
+ n += wcount[i];
+
+ e = malloc(sizeof(*e) * (n+1)); // add an extra one as a sentinel
+ if (e == 0) return;
+ n = 0;
+
+ m=0;
+ for (i=0; i < windings; ++i) {
+ Point *p = pts + m;
+ m += wcount[i];
+ j = wcount[i]-1;
+ for (k=0; k < wcount[i]; j=k++) {
+ int a=k,b=j;
+ // skip the Edge if horizontal
+ if (p[j].y == p[k].y)
+ continue;
+ // add edge from j to k to the list
+ e[n].invert = 0;
+ if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) {
+ e[n].invert = 1;
+ a=j,b=k;
+ }
+ e[n].x0 = p[a].x * scale_x + shift_x;
+ e[n].y0 = (p[a].y * y_scale_inv + shift_y) * vsubsample;
+ e[n].x1 = p[b].x * scale_x + shift_x;
+ e[n].y1 = (p[b].y * y_scale_inv + shift_y) * vsubsample;
+ ++n;
+ }
+ }
+
+ // now sort the edges by their highest point (should snap to integer, and then by x)
+ //STBTT_sort(e, n, sizeof(e[0]), edge_compare);
+ sort_edges(e, n);
+
+ // now, traverse the scanlines and find the intersections on each scanline, use xor winding rule
+ rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, userdata);
+
+ free(e);
+}
+
+static
+void
+add_point(Point *points, int n, float x, float y)
+{
+ if (!points) return; // during first pass, it's unallocated
+ points[n].x = x;
+ points[n].y = y;
+}
+
+// tessellate until threshold p is happy... @TODO warped to compensate for non-linear stretching
+static
+int
+tesselate_curve(Point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float objspace_flatness_squared, int n)
+{
+ // midpoint
+ float mx = (x0 + 2*x1 + x2)/4;
+ float my = (y0 + 2*y1 + y2)/4;
+ // versus directly drawn line
+ float dx = (x0+x2)/2 - mx;
+ float dy = (y0+y2)/2 - my;
+ if (n > 16) // 65536 segments on one curve better be enough!
+ return 1;
+ if (dx*dx+dy*dy > objspace_flatness_squared) { // half-pixel error allowed... need to be smaller if AA
+ tesselate_curve(points, num_points, x0,y0, (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1);
+ tesselate_curve(points, num_points, mx,my, (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1);
+ } else {
+ add_point(points, *num_points,x2,y2);
+ *num_points = *num_points+1;
+ }
+ return 1;
+}
+
+static
+void
+tesselate_cubic(Point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float objspace_flatness_squared, int n)
+{
+ // @TODO this "flatness" calculation is just made-up nonsense that seems to work well enough
+ float dx0 = x1-x0;
+ float dy0 = y1-y0;
+ float dx1 = x2-x1;
+ float dy1 = y2-y1;
+ float dx2 = x3-x2;
+ float dy2 = y3-y2;
+ float dx = x3-x0;
+ float dy = y3-y0;
+ float longlen = (float) (sqrt(dx0*dx0+dy0*dy0)+sqrt(dx1*dx1+dy1*dy1)+sqrt(dx2*dx2+dy2*dy2));
+ float shortlen = (float) sqrt(dx*dx+dy*dy);
+ float flatness_squared = longlen*longlen-shortlen*shortlen;
+
+ if (n > 16) // 65536 segments on one curve better be enough!
+ return;
+
+ if (flatness_squared > objspace_flatness_squared) {
+ float x01 = (x0+x1)/2;
+ float y01 = (y0+y1)/2;
+ float x12 = (x1+x2)/2;
+ float y12 = (y1+y2)/2;
+ float x23 = (x2+x3)/2;
+ float y23 = (y2+y3)/2;
+
+ float xa = (x01+x12)/2;
+ float ya = (y01+y12)/2;
+ float xb = (x12+x23)/2;
+ float yb = (y12+y23)/2;
+
+ float mx = (xa+xb)/2;
+ float my = (ya+yb)/2;
+
+ tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, objspace_flatness_squared,n+1);
+ tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, objspace_flatness_squared,n+1);
+ } else {
+ add_point(points, *num_points,x3,y3);
+ *num_points = *num_points+1;
+ }
+}
+
+// returns number of contours
+static
+Point *
+flatten(font·Vertex *vertices, int num_verts, float objspace_flatness, int **contour_lengths, int *num_contours, void *userdata)
+{
+ Point *points=0;
+ int num_points=0;
+
+ float objspace_flatness_squared = objspace_flatness * objspace_flatness;
+ int i,n=0,start=0, pass;
+
+ // count how many "moves" there are to get the contour count
+ for (i=0; i < num_verts; ++i)
+ if (vertices[i].type == font·Vmove)
+ ++n;
+
+ *num_contours = n;
+ if (n == 0) return 0;
+
+ *contour_lengths = malloc(sizeof(**contour_lengths) * n);
+
+ if (*contour_lengths == 0) {
+ *num_contours = 0;
+ return 0;
+ }
+
+ // make two passes through the points so we don't need to realloc
+ for (pass=0; pass < 2; ++pass) {
+ float x=0,y=0;
+ if (pass == 1) {
+ points = malloc(num_points * sizeof(points[0]));
+ if (!points)
+ goto error;
+ }
+ num_points = 0;
+ n= -1;
+ for (i=0; i < num_verts; ++i) {
+ switch (vertices[i].type) {
+ case font·Vmove:
+ // start the next contour
+ if (n >= 0)
+ (*contour_lengths)[n] = num_points - start;
+ ++n;
+ start = num_points;
+
+ x = vertices[i].x, y = vertices[i].y;
+ add_point(points, num_points++, x,y);
+ break;
+ case font·Vline:
+ x = vertices[i].x, y = vertices[i].y;
+ add_point(points, num_points++, x, y);
+ break;
+ case font·Vcurve:
+ tesselate_curve(points, &num_points, x,y,
+ vertices[i].cx, vertices[i].cy,
+ vertices[i].x, vertices[i].y,
+ objspace_flatness_squared, 0);
+ x = vertices[i].x, y = vertices[i].y;
+ break;
+ case font·Vcubic:
+ tesselate_cubic(points, &num_points, x,y,
+ vertices[i].cx, vertices[i].cy,
+ vertices[i].cx1, vertices[i].cy1,
+ vertices[i].x, vertices[i].y,
+ objspace_flatness_squared, 0);
+ x = vertices[i].x, y = vertices[i].y;
+ break;
+ }
+ }
+ (*contour_lengths)[n] = num_points - start;
+ }
+
+ return points;
+error:
+ free(points);
+ free(*contour_lengths);
+ *contour_lengths = 0;
+ *num_contours = 0;
+ return nil;
+}
+
+void
+font·rasterize(font·Bitmap *result, float flatness_in_pixels, font·Vertex *vertices, int num_verts, float scale_x, float scale_y, float shift_x, float shift_y, int x_off, int y_off, int invert, void *userdata)
+{
+ float scale = scale_x > scale_y ? scale_y : scale_x;
+ int winding_count = 0;
+ int *winding_lengths = nil;
+ Point *windings = flatten(vertices, num_verts, flatness_in_pixels / scale, &winding_lengths, &winding_count, userdata);
+ if (windings) {
+ rasterize(result, windings, winding_lengths, winding_count, scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, userdata);
+ free(winding_lengths);
+ free(windings);
+ }
+}
+
+void
+font·freebitmap(uchar *bm, void *userdata)
+{
+ free(bm);
+}
+
+uchar *
+font·glyph_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff)
+{
+ int ix0,iy0,ix1,iy1;
+ font·Bitmap gbm;
+ font·Vertex *vertices;
+ int num_verts = font·glyph_shape(info, glyph, &vertices);
+
+ if (scale_x == 0) scale_x = scale_y;
+ if (scale_y == 0) {
+ if (scale_x == 0) {
+ free(vertices);
+ return nil;
+ }
+ scale_y = scale_x;
+ }
+
+ font·glyph_bitmapbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,&ix1,&iy1);
+
+ // now we get the size
+ gbm.w = (ix1 - ix0);
+ gbm.h = (iy1 - iy0);
+ gbm.pixels = nil; // in case we error
+
+ if (width ) *width = gbm.w;
+ if (height) *height = gbm.h;
+ if (xoff ) *xoff = ix0;
+ if (yoff ) *yoff = iy0;
+
+ if (gbm.w && gbm.h) {
+ gbm.pixels = malloc(gbm.w * gbm.h);
+ if (gbm.pixels) {
+ gbm.stride = gbm.w;
+
+ font·rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0, iy0, 1, info->userdata);
+ }
+ }
+ free(vertices);
+ return gbm.pixels;
+}
+
+uchar *
+font·glyph_makebitmap(font·Info *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff)
+{
+ return font·glyph_makebitmap_subpixel(info, scale_x, scale_y, 0.0f, 0.0f, glyph, width, height, xoff, yoff);
+}
+
+void
+font·glyph_fillbitmap_subpixel(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph)
+{
+ int ix0,iy0;
+ font·Vertex *vertices;
+ int num_verts = font·glyph_shape(info, glyph, &vertices);
+ font·Bitmap gbm;
+
+ font·glyph_bitmapbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,0,0);
+ gbm.pixels = output;
+ gbm.w = out_w;
+ gbm.h = out_h;
+ gbm.stride = out_stride;
+
+ if (gbm.w && gbm.h)
+ font·rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0,iy0, 1, info->userdata);
+
+ free(vertices);
+}
+
+void
+font·glyph_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph)
+{
+ font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f, 0.0f, glyph);
+}
+
+uchar *
+font·code_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff)
+{
+ return font·glyph_makebitmap_subpixel(info, scale_x, scale_y,shift_x,shift_y, font·glyph_index(info,codepoint), width,height,xoff,yoff);
+}
+
+void
+font·code_fillbitmap_subpixel_prefilter(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint)
+{
+ font·glyph_fillbitmap_subpixel_prefilter(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, oversample_x, oversample_y, sub_x, sub_y, font·glyph_index(info,codepoint));
+}
+
+void
+font·code_fillbitmap_subpixel(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint)
+{
+ font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, font·glyph_index(info, codepoint));
+}
+
+uchar *
+font·code_makebitmap(font·Info *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff)
+{
+ return font·code_makebitmap_subpixel(info, scale_x, scale_y, 0.0f,0.0f, codepoint, width,height,xoff,yoff);
+}
+
+void
+font·code_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint)
+{
+ font·code_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, codepoint);
+}
+
+#define OVERMASK (SAMPLE-1)
+
+static
+void
+h_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width)
+{
+ uchar buffer[SAMPLE];
+ int safe_w = w - kernel_width;
+ int j;
+ memset(buffer, 0, SAMPLE); // suppress bogus warning from VS2013 -analyze
+ for (j=0; j < h; ++j) {
+ int i;
+ unsigned int total;
+ memset(buffer, 0, kernel_width);
+
+ total = 0;
+
+ // make kernel_width a constant in common cases so compiler can optimize out the divide
+ switch (kernel_width) {
+ case 2:
+ for (i=0; i <= safe_w; ++i) {
+ total += pixels[i] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i];
+ pixels[i] = (uchar) (total / 2);
+ }
+ break;
+ case 3:
+ for (i=0; i <= safe_w; ++i) {
+ total += pixels[i] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i];
+ pixels[i] = (uchar) (total / 3);
+ }
+ break;
+ case 4:
+ for (i=0; i <= safe_w; ++i) {
+ total += pixels[i] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i];
+ pixels[i] = (uchar) (total / 4);
+ }
+ break;
+ case 5:
+ for (i=0; i <= safe_w; ++i) {
+ total += pixels[i] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i];
+ pixels[i] = (uchar) (total / 5);
+ }
+ break;
+ default:
+ for (i=0; i <= safe_w; ++i) {
+ total += pixels[i] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i];
+ pixels[i] = (uchar) (total / kernel_width);
+ }
+ break;
+ }
+
+ for (; i < w; ++i) {
+ assert(pixels[i] == 0);
+ total -= buffer[i & OVERMASK];
+ pixels[i] = (uchar) (total / kernel_width);
+ }
+
+ pixels += stride_in_bytes;
+ }
+}
+
+static
+void
+v_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width)
+{
+ uchar buffer[SAMPLE];
+ int safe_h = h - kernel_width;
+ int j;
+ memset(buffer, 0, SAMPLE);
+ for (j=0; j < w; ++j) {
+ int i;
+ unsigned int total;
+ memset(buffer, 0, kernel_width);
+
+ total = 0;
+
+ // make kernel_width a constant in common cases so compiler can optimize out the divide
+ switch (kernel_width) {
+ case 2:
+ for (i=0; i <= safe_h; ++i) {
+ total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (uchar) (total / 2);
+ }
+ break;
+ case 3:
+ for (i=0; i <= safe_h; ++i) {
+ total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (uchar) (total / 3);
+ }
+ break;
+ case 4:
+ for (i=0; i <= safe_h; ++i) {
+ total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (uchar) (total / 4);
+ }
+ break;
+ case 5:
+ for (i=0; i <= safe_h; ++i) {
+ total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (uchar) (total / 5);
+ }
+ break;
+ default:
+ for (i=0; i <= safe_h; ++i) {
+ total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK];
+ buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes];
+ pixels[i*stride_in_bytes] = (uchar) (total / kernel_width);
+ }
+ break;
+ }
+
+ for (; i < h; ++i) {
+ assert(pixels[i*stride_in_bytes] == 0);
+ total -= buffer[i & OVERMASK];
+ pixels[i*stride_in_bytes] = (uchar) (total / kernel_width);
+ }
+
+ pixels += 1;
+ }
+}
+
+static
+float
+oversample_shift(int oversample)
+{
+ if (!oversample)
+ return 0.0f;
+
+ // The prefilter is a box filter of width "oversample",
+ // which shifts phase by (oversample - 1)/2 pixels in
+ // oversampled space. We want to shift in the opposite
+ // direction to counter this.
+ return (float)-(oversample - 1) / (2.0f * (float)oversample);
+}
+
+// rects array must be big enough to accommodate all characters in the given ranges
+void
+font·glyph_fillbitmap_subpixel_prefilter(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int prefilter_x, int prefilter_y, float *sub_x, float *sub_y, int glyph)
+{
+ font·glyph_fillbitmap_subpixel(info,
+ output,
+ out_w - (prefilter_x - 1),
+ out_h - (prefilter_y - 1),
+ out_stride,
+ scale_x,
+ scale_y,
+ shift_x,
+ shift_y,
+ glyph);
+
+ if (prefilter_x > 1)
+ h_prefilter(output, out_w, out_h, out_stride, prefilter_x);
+
+ if (prefilter_y > 1)
+ v_prefilter(output, out_w, out_h, out_stride, prefilter_y);
+
+ *sub_x = oversample_shift(prefilter_x);
+ *sub_y = oversample_shift(prefilter_y);
+}
+
+void
+font·scaledvmetrics(uchar *fontdata, int index, float size, float *ascent, float *descent, float *lineGap)
+{
+ int i_ascent, i_descent, i_lineGap;
+ float scale;
+ font·Info info;
+ init(&info, fontdata, font·offsetfor(fontdata, index));
+ scale = size > 0 ? font·scaleheightto(&info, size) : font·scaleheighttoem(&info, -size);
+ font·vmetrics(&info, &i_ascent, &i_descent, &i_lineGap);
+ *ascent = (float) i_ascent * scale;
+ *descent = (float) i_descent * scale;
+ *lineGap = (float) i_lineGap * scale;
+}
+
+// -----------------------------------------------------------------------
+// sdf computation
+
+static
+int
+ray_intersect_bezier(float orig[2], float ray[2], float q0[2], float q1[2], float q2[2], float hits[2][2])
+{
+ float q0perp = q0[1]*ray[0] - q0[0]*ray[1];
+ float q1perp = q1[1]*ray[0] - q1[0]*ray[1];
+ float q2perp = q2[1]*ray[0] - q2[0]*ray[1];
+ float roperp = orig[1]*ray[0] - orig[0]*ray[1];
+
+ float a = q0perp - 2*q1perp + q2perp;
+ float b = q1perp - q0perp;
+ float c = q0perp - roperp;
+
+ float s0 = 0., s1 = 0.;
+ int num_s = 0;
+
+ if (a != 0.0) {
+ float discr = b*b - a*c;
+ if (discr > 0.0) {
+ float rcpna = -1 / a;
+ float d = (float) sqrt(discr);
+ s0 = (b+d) * rcpna;
+ s1 = (b-d) * rcpna;
+ if (s0 >= 0.0 && s0 <= 1.0)
+ num_s = 1;
+ if (d > 0.0 && s1 >= 0.0 && s1 <= 1.0) {
+ if (num_s == 0) s0 = s1;
+ ++num_s;
+ }
+ }
+ } else {
+ // 2*b*s + c = 0
+ // s = -c / (2*b)
+ s0 = c / (-2 * b);
+ if (s0 >= 0.0 && s0 <= 1.0)
+ num_s = 1;
+ }
+
+ if (num_s == 0)
+ return 0;
+ else {
+ float rcp_len2 = 1 / (ray[0]*ray[0] + ray[1]*ray[1]);
+ float rayn_x = ray[0] * rcp_len2, rayn_y = ray[1] * rcp_len2;
+
+ float q0d = q0[0]*rayn_x + q0[1]*rayn_y;
+ float q1d = q1[0]*rayn_x + q1[1]*rayn_y;
+ float q2d = q2[0]*rayn_x + q2[1]*rayn_y;
+ float rod = orig[0]*rayn_x + orig[1]*rayn_y;
+
+ float q10d = q1d - q0d;
+ float q20d = q2d - q0d;
+ float q0rd = q0d - rod;
+
+ hits[0][0] = q0rd + s0*(2.0f - 2.0f*s0)*q10d + s0*s0*q20d;
+ hits[0][1] = a*s0+b;
+
+ if (num_s > 1) {
+ hits[1][0] = q0rd + s1*(2.0f - 2.0f*s1)*q10d + s1*s1*q20d;
+ hits[1][1] = a*s1+b;
+ return 2;
+ } else {
+ return 1;
+ }
+ }
+}
+
+static
+int
+equal(float *a, float *b)
+{
+ return (a[0] == b[0] && a[1] == b[1]);
+}
+
+static
+int
+compute_crossings_x(float x, float y, int nverts, font·Vertex *verts)
+{
+ int i;
+ float orig[2], ray[2] = { 1, 0 };
+ float y_frac;
+ int winding = 0;
+
+ orig[0] = x;
+ orig[1] = y;
+
+ // make sure y never passes through a vertex of the shape
+ y_frac = (float) fmod(y, 1.0f);
+ if (y_frac < 0.01f)
+ y += 0.01f;
+ else if (y_frac > 0.99f)
+ y -= 0.01f;
+ orig[1] = y;
+
+ // test a ray from (-infinity,y) to (x,y)
+ for (i=0; i < nverts; ++i) {
+ if (verts[i].type == font·Vline) {
+ int x0 = (int) verts[i-1].x, y0 = (int) verts[i-1].y;
+ int x1 = (int) verts[i ].x, y1 = (int) verts[i ].y;
+ if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) {
+ float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0;
+ if (x_inter < x)
+ winding += (y0 < y1) ? 1 : -1;
+ }
+ }
+ if (verts[i].type == font·Vcurve) {
+ int x0 = (int) verts[i-1].x , y0 = (int) verts[i-1].y ;
+ int x1 = (int) verts[i ].cx, y1 = (int) verts[i ].cy;
+ int x2 = (int) verts[i ].x , y2 = (int) verts[i ].y ;
+ int ax = MIN(x0,MIN(x1,x2)), ay = MIN(y0,MIN(y1,y2));
+ int by = MAX(y0,MAX(y1,y2));
+ if (y > ay && y < by && x > ax) {
+ float q0[2],q1[2],q2[2];
+ float hits[2][2];
+ q0[0] = (float)x0;
+ q0[1] = (float)y0;
+ q1[0] = (float)x1;
+ q1[1] = (float)y1;
+ q2[0] = (float)x2;
+ q2[1] = (float)y2;
+ if (equal(q0,q1) || equal(q1,q2)) {
+ x0 = (int)verts[i-1].x;
+ y0 = (int)verts[i-1].y;
+ x1 = (int)verts[i ].x;
+ y1 = (int)verts[i ].y;
+ if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) {
+ float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0;
+ if (x_inter < x)
+ winding += (y0 < y1) ? 1 : -1;
+ }
+ } else {
+ int num_hits = ray_intersect_bezier(orig, ray, q0, q1, q2, hits);
+ if (num_hits >= 1)
+ if (hits[0][0] < 0)
+ winding += (hits[0][1] < 0 ? -1 : 1);
+ if (num_hits >= 2)
+ if (hits[1][0] < 0)
+ winding += (hits[1][1] < 0 ? -1 : 1);
+ }
+ }
+ }
+ }
+ return winding;
+}
+
+static
+float
+cuberoot(float x)
+{
+ if (x<0)
+ return -(float) pow(-x,1.0f/3.0f);
+ else
+ return (float) pow( x,1.0f/3.0f);
+}
+
+// x^3 + c*x^2 + b*x + a = 0
+static
+int
+solve_cubic(float a, float b, float c, float *r)
+{
+ float s = -a / 3;
+ float p = b - a*a / 3;
+ float q = a * (2*a*a - 9*b) / 27 + c;
+ float p3 = p*p*p;
+ float d = q*q + 4*p3 / 27;
+ if (d >= 0) {
+ float z = (float) sqrt(d);
+ float u = (-q + z) / 2;
+ float v = (-q - z) / 2;
+ u = cuberoot(u);
+ v = cuberoot(v);
+ r[0] = s + u + v;
+ return 1;
+ } else {
+ float u = (float) sqrt(-p/3);
+ float v = (float) acos(-sqrt(-27/p3) * q / 2) / 3; // p3 must be negative, since d is negative
+ float m = (float) cos(v);
+ float n = (float) cos(v-3.141592/2)*1.732050808f;
+ r[0] = s + u * 2 * m;
+ r[1] = s - u * (m + n);
+ r[2] = s - u * (m - n);
+
+ return 3;
+ }
+}
+
+uchar *
+font·glyph_sdf(font·Info *info, float scale, int glyph, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff)
+{
+ float scale_x = scale, scale_y = scale;
+ int ix0,iy0,ix1,iy1;
+ int w,h;
+ uchar *data;
+
+ if (scale == 0) return nil;
+
+ font·glyph_bitmapbox_subpixel(info, glyph, scale, scale, 0.0f,0.0f, &ix0,&iy0,&ix1,&iy1);
+
+ // if empty, return nil
+ if (ix0 == ix1 || iy0 == iy1)
+ return nil;
+
+ ix0 -= padding;
+ iy0 -= padding;
+ ix1 += padding;
+ iy1 += padding;
+
+ w = (ix1 - ix0);
+ h = (iy1 - iy0);
+
+ if (width ) *width = w;
+ if (height) *height = h;
+ if (xoff ) *xoff = ix0;
+ if (yoff ) *yoff = iy0;
+
+ // invert for y-downwards bitmaps
+ scale_y = -scale_y;
+
+ {
+ int x,y,i,j;
+ float *precompute;
+ font·Vertex *verts;
+ int num_verts = font·glyph_shape(info, glyph, &verts);
+ data = malloc(w * h);
+ precompute = malloc(num_verts * sizeof(float));
+
+ for (i=0,j=num_verts-1; i < num_verts; j=i++) {
+ if (verts[i].type == font·Vline) {
+ float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y;
+ float x1 = verts[j].x*scale_x, y1 = verts[j].y*scale_y;
+ float dist = (float) sqrt((x1-x0)*(x1-x0) + (y1-y0)*(y1-y0));
+ precompute[i] = (dist == 0) ? 0.0f : 1.0f / dist;
+ } else if (verts[i].type == font·Vcurve) {
+ float x2 = verts[j].x *scale_x, y2 = verts[j].y *scale_y;
+ float x1 = verts[i].cx*scale_x, y1 = verts[i].cy*scale_y;
+ float x0 = verts[i].x *scale_x, y0 = verts[i].y *scale_y;
+ float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2;
+ float len2 = bx*bx + by*by;
+ if (len2 != 0.0f)
+ precompute[i] = 1.0f / (bx*bx + by*by);
+ else
+ precompute[i] = 0.0f;
+ } else
+ precompute[i] = 0.0f;
+ }
+
+ for (y=iy0; y < iy1; ++y) {
+ for (x=ix0; x < ix1; ++x) {
+ float val;
+ float min_dist = 999999.0f;
+ float sx = (float) x + 0.5f;
+ float sy = (float) y + 0.5f;
+ float x_gspace = (sx / scale_x);
+ float y_gspace = (sy / scale_y);
+
+ int winding = compute_crossings_x(x_gspace, y_gspace, num_verts, verts); // @OPTIMIZE: this could just be a rasterization, but needs to be line vs. non-tesselated curves so a new path
+
+ for (i=0; i < num_verts; ++i) {
+ float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y;
+
+ // check against every point here rather than inside line/curve primitives -- @TODO: wrong if multiple 'moves' in a row produce a garbage point, and given culling, probably more efficient to do within line/curve
+ float dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy);
+ if (dist2 < min_dist*min_dist)
+ min_dist = (float)sqrt(dist2);
+
+ if (verts[i].type == font·Vline) {
+ float x1 = verts[i-1].x*scale_x, y1 = verts[i-1].y*scale_y;
+
+ // coarse culling against bbox
+ //if (sx > MIN(x0,x1)-min_dist && sx < MAX(x0,x1)+min_dist &&
+ // sy > MIN(y0,y1)-min_dist && sy < MAX(y0,y1)+min_dist)
+ float dist = (float) fabs((x1-x0)*(y0-sy) - (y1-y0)*(x0-sx)) * precompute[i];
+ assert(i != 0);
+ if (dist < min_dist) {
+ // check position along line
+ // x' = x0 + t*(x1-x0), y' = y0 + t*(y1-y0)
+ // minimize (x'-sx)*(x'-sx)+(y'-sy)*(y'-sy)
+ float dx = x1-x0, dy = y1-y0;
+ float px = x0-sx, py = y0-sy;
+ // minimize (px+t*dx)^2 + (py+t*dy)^2 = px*px + 2*px*dx*t + t^2*dx*dx + py*py + 2*py*dy*t + t^2*dy*dy
+ // derivative: 2*px*dx + 2*py*dy + (2*dx*dx+2*dy*dy)*t, set to 0 and solve
+ float t = -(px*dx + py*dy) / (dx*dx + dy*dy);
+ if (t >= 0.0f && t <= 1.0f)
+ min_dist = dist;
+ }
+ } else if (verts[i].type == font·Vcurve) {
+ float x2 = verts[i-1].x *scale_x, y2 = verts[i-1].y *scale_y;
+ float x1 = verts[i ].cx*scale_x, y1 = verts[i ].cy*scale_y;
+ float box_x0 = MIN(MIN(x0,x1),x2);
+ float box_y0 = MIN(MIN(y0,y1),y2);
+ float box_x1 = MAX(MAX(x0,x1),x2);
+ float box_y1 = MAX(MAX(y0,y1),y2);
+ // coarse culling against bbox to avoid computing cubic unnecessarily
+ if (sx > box_x0-min_dist && sx < box_x1+min_dist && sy > box_y0-min_dist && sy < box_y1+min_dist) {
+ int num=0;
+ float ax = x1-x0, ay = y1-y0;
+ float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2;
+ float mx = x0 - sx, my = y0 - sy;
+ float res[3],px,py,t,it;
+ float a_inv = precompute[i];
+ if (a_inv == 0.0) { // if a_inv is 0, it's 2nd degree so use quadratic formula
+ float a = 3*(ax*bx + ay*by);
+ float b = 2*(ax*ax + ay*ay) + (mx*bx+my*by);
+ float c = mx*ax+my*ay;
+ if (a == 0.0) { // if a is 0, it's linear
+ if (b != 0.0) {
+ res[num++] = -c/b;
+ }
+ } else {
+ float discriminant = b*b - 4*a*c;
+ if (discriminant < 0)
+ num = 0;
+ else {
+ float root = (float) sqrt(discriminant);
+ res[0] = (-b - root)/(2*a);
+ res[1] = (-b + root)/(2*a);
+ num = 2; // don't bother distinguishing 1-solution case, as code below will still work
+ }
+ }
+ } else {
+ float b = 3*(ax*bx + ay*by) * a_inv; // could precompute this as it doesn't depend on sample point
+ float c = (2*(ax*ax + ay*ay) + (mx*bx+my*by)) * a_inv;
+ float d = (mx*ax+my*ay) * a_inv;
+ num = solve_cubic(b, c, d, res);
+ }
+ if (num >= 1 && res[0] >= 0.0f && res[0] <= 1.0f) {
+ t = res[0], it = 1.0f - t;
+ px = it*it*x0 + 2*t*it*x1 + t*t*x2;
+ py = it*it*y0 + 2*t*it*y1 + t*t*y2;
+ dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy);
+ if (dist2 < min_dist * min_dist)
+ min_dist = (float) sqrt(dist2);
+ }
+ if (num >= 2 && res[1] >= 0.0f && res[1] <= 1.0f) {
+ t = res[1], it = 1.0f - t;
+ px = it*it*x0 + 2*t*it*x1 + t*t*x2;
+ py = it*it*y0 + 2*t*it*y1 + t*t*y2;
+ dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy);
+ if (dist2 < min_dist * min_dist)
+ min_dist = (float) sqrt(dist2);
+ }
+ if (num >= 3 && res[2] >= 0.0f && res[2] <= 1.0f) {
+ t = res[2], it = 1.0f - t;
+ px = it*it*x0 + 2*t*it*x1 + t*t*x2;
+ py = it*it*y0 + 2*t*it*y1 + t*t*y2;
+ dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy);
+ if (dist2 < min_dist * min_dist)
+ min_dist = (float) sqrt(dist2);
+ }
+ }
+ }
+ }
+ if (winding == 0)
+ min_dist = -min_dist; // if outside the shape, value is negative
+ val = onedge_value + pixel_dist_scale * min_dist;
+ if (val < 0)
+ val = 0;
+ else if (val > 255)
+ val = 255;
+ data[(y-iy0)*w+(x-ix0)] = (uchar) val;
+ }
+ }
+ free(precompute);
+ free(verts);
+ }
+ return data;
+}
+
+uchar *
+font·code_sdf(font·Info *info, float scale, int codepoint, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff)
+{
+ return font·glyph_sdf(info, scale, font·glyph_index(info, codepoint), padding, onedge_value, pixel_dist_scale, width, height, xoff, yoff);
+}
+
+void
+font·freesdf(uchar *bitmap, void *userdata)
+{
+ free(bitmap);
+}
+
+char*
+font·name(font·Info *font, int *length, int platformID, int encodingID, int languageID, int nameID)
+{
+ int32 i,count,stringOffset;
+ uchar *fc = font->data;
+ uint32 offset = font->fontstart;
+ uint32 nm = find_table(fc, offset, "name");
+ if (!nm) return nil;
+
+ count = ttUSHORT(fc+nm+2);
+ stringOffset = nm + ttUSHORT(fc+nm+4);
+ for (i=0; i < count; ++i) {
+ uint32 loc = nm + 6 + 12 * i;
+ if (platformID == ttUSHORT(fc+loc+0) && encodingID == ttUSHORT(fc+loc+2)
+ && languageID == ttUSHORT(fc+loc+4) && nameID == ttUSHORT(fc+loc+6)) {
+ *length = ttUSHORT(fc+loc+8);
+ return (char *) (fc+stringOffset+ttUSHORT(fc+loc+10));
+ }
+ }
+ return nil;
+}
+
+#if 0
+static
+int
+matchpair(uchar *fc, uint32 nm, uchar *name, int32 nlen, int32 target_id, int32 next_id)
+{
+ int32 i;
+ int32 count = ttUSHORT(fc+nm+2);
+ int32 stringOffset = nm + ttUSHORT(fc+nm+4);
+
+ for (i=0; i < count; ++i) {
+ uint32 loc = nm + 6 + 12 * i;
+ int32 id = ttUSHORT(fc+loc+6);
+ if (id == target_id) {
+ // find the encoding
+ int32 platform = ttUSHORT(fc+loc+0), encoding = ttUSHORT(fc+loc+2), language = ttUSHORT(fc+loc+4);
+
+ // is this a Unicode encoding?
+ if (platform == 0 || (platform == 3 && encoding == 1) || (platform == 3 && encoding == 10)) {
+ int32 slen = ttUSHORT(fc+loc+8);
+ int32 off = ttUSHORT(fc+loc+10);
+
+ // check if there's a prefix match
+ int32 matchlen = CompareUTF8toUTF16_bigendian_prefix(name, nlen, fc+stringOffset+off,slen);
+ if (matchlen >= 0) {
+ // check for target_id+1 immediately following, with same encoding & language
+ if (i+1 < count && ttUSHORT(fc+loc+12+6) == next_id && ttUSHORT(fc+loc+12) == platform && ttUSHORT(fc+loc+12+2) == encoding && ttUSHORT(fc+loc+12+4) == language) {
+ slen = ttUSHORT(fc+loc+12+8);
+ off = ttUSHORT(fc+loc+12+10);
+ if (slen == 0) {
+ if (matchlen == nlen)
+ return 1;
+ } else if (matchlen < nlen && name[matchlen] == ' ') {
+ ++matchlen;
+ if (font·CompareUTF8toUTF16_bigendian((char*) (name+matchlen), nlen-matchlen, (char*)(fc+stringOffset+off),slen))
+ return 1;
+ }
+ } else {
+ // if nothing immediately following
+ if (matchlen == nlen)
+ return 1;
+ }
+ }
+ }
+
+ // @TODO handle other encodings
+ }
+ }
+ return 0;
+}
+
+static
+int
+matches(uchar *fc, uint32 offset, uchar *name, int32 flags)
+{
+ int32 nlen = (int32) strlen((char *) name);
+ uint32 nm, hd;
+ if (!isfont(fc+offset))
+ return 0;
+
+ // check italics/bold/underline flags in macStyle...
+ if (flags) {
+ hd = find_table(fc, offset, "head");
+ if ((ttUSHORT(fc+hd+44) & 7) != (flags & 7)) return 0;
+ }
+
+ nm = find_table(fc, offset, "name");
+ if (!nm) return 0;
+
+ if (flags) {
+ // if we checked the macStyle flags, then just check the family and ignore the subfamily
+ if (matchpair(fc, nm, name, nlen, 16, -1)) return 1;
+ if (matchpair(fc, nm, name, nlen, 1, -1)) return 1;
+ if (matchpair(fc, nm, name, nlen, 3, -1)) return 1;
+ } else {
+ if (matchpair(fc, nm, name, nlen, 16, 17)) return 1;
+ if (matchpair(fc, nm, name, nlen, 1, 2)) return 1;
+ if (matchpair(fc, nm, name, nlen, 3, -1)) return 1;
+ }
+
+ return 0;
+}
+
+int
+font·findmatch(uchar *font_collection, char *name_utf8, int32 flags)
+{
+ int32 i;
+ for (i=0;;++i) {
+ int32 off = font·offsetfor(font_collection, i);
+ if (off < 0) return off;
+ if (matches((uchar *) font_collection, off, (uchar*) name_utf8, flags))
+ return off;
+ }
+}
+#endif
diff --git a/sys/libfont/rules.mk b/sys/libfont/rules.mk
new file mode 100644
index 0000000..af3e8fa
--- /dev/null
+++ b/sys/libfont/rules.mk
@@ -0,0 +1,19 @@
+include share/push.mk
+# Iterate through subdirectory tree
+
+# Local sources
+SRCS_$(d) := $(d)/font.c
+LIBS_$(d) := $(d)/libfont.a
+TSTS_$(d) := $(d)/test.c
+
+include share/paths.mk
+
+# Local rules
+$(LIBS_$(d)): $(OBJS_$(d))
+ $(ARCHIVE)
+
+$(UNTS_$(d)): TCLIBS := $(LIBS_$(d)) $(OBJ_DIR)/libn/libn.a
+$(UNTS_$(d)): $(TOBJS_$(d)) $(LIBS_$(d))
+ $(LINK)
+
+include share/pop.mk
diff --git a/sys/libfont/test.c b/sys/libfont/test.c
new file mode 100644
index 0000000..b92a56f
--- /dev/null
+++ b/sys/libfont/test.c
@@ -0,0 +1,62 @@
+#include <u.h>
+#include <libn.h>
+#include <libfont.h>
+
+#define STB_IMAGE_WRITE_IMPLEMENTATION
+#include "stb_image_write.h"
+
+#define W 512
+#define H 128
+#define L 64
+
+static char *phrase = "the quick brown";
+
+int
+main()
+{
+ int i, err;
+ float scale;
+ uchar *bitmap;
+ font·Info *info;
+ mmap·Reader fontfile;
+ int x, y, as, ds, lg, ax, lsb, off, kern, r[2], c0[2], c1[2];
+
+ err = 0;
+ fontfile = mmap·open("/home/nolln/root/data/DejaVuSans.ttf");
+ if (!fontfile.len) {
+ err = 1;
+ goto end;
+ }
+ info = font·make(fontfile.ubuf, 0);
+ if (!info)
+ panicf("failed to load info");
+
+ bitmap = calloc(W*H, sizeof(*bitmap));
+ scale = font·scaleheightto(info, L);
+
+ font·vmetrics(info, &as, &ds, &lg);
+ as *= scale;
+ ds *= scale;
+
+ x = 0;
+ for (i = 0; i < strlen(phrase); i++) {
+ font·code_hmetrics(info, phrase[i], &ax, &lsb);
+ font·code_bitmapbox(info, phrase[i], scale, scale, c0, c0+1, c1, c1+1);
+
+ y = as + c0[1];
+ off = x + lsb * scale + y * W;
+ font·code_fillbitmap(info, bitmap+off, c1[0]-c0[0], c1[1]-c0[1], W, scale, scale, phrase[i]);
+
+ x += ax * scale;
+ kern = font·code_kernadvance(info, phrase[i], phrase[i+1]);
+ x += kern * scale;
+ }
+
+ stbi_write_png("out.png", W, H, 1, bitmap, W);
+
+ font·free(info);
+ free(bitmap);
+end:
+ mmap·close(fontfile);
+ return err;
+}