From eeb5831bb4d62c35eca6db333137a9b8bf682e6e Mon Sep 17 00:00:00 2001 From: Nicholas Noll Date: Sat, 6 Jun 2020 11:04:36 -0700 Subject: deprecated wayland --- sys/libfont/font.c | 3419 -------------------------------------------------- sys/libfont/rules.mk | 19 - sys/libfont/test.c | 119 +- 3 files changed, 116 insertions(+), 3441 deletions(-) delete mode 100644 sys/libfont/font.c delete mode 100644 sys/libfont/rules.mk (limited to 'sys/libfont') diff --git a/sys/libfont/font.c b/sys/libfont/font.c deleted file mode 100644 index 53988f6..0000000 --- a/sys/libfont/font.c +++ /dev/null @@ -1,3419 +0,0 @@ -#include "font.h" - -// ----------------------------------------------------------------------- -// buffer helpers to parse data from file - -static -uchar -getbyte(Buffer *b) -{ - if (b->cursor >= b->size) - return 0; - - return b->data[b->cursor++]; -} - -static -uchar -peek(Buffer *b) -{ - if (b->cursor >= b->size) - return 0; - - return b->data[b->cursor]; -} - -static -void -seek(Buffer *b, int o) -{ - assert(!(o > b->size || o < 0)); - b->cursor = (o > b->size || o < 0) ? b->size : o; -} - -static -void -skip(Buffer *b, int o) -{ - seek(b, b->cursor + o); -} - -static -uint32 -getbytes(Buffer *b, int n) -{ - uint32 v; - int i; - assert(n >= 1 && n <= 4); - - v = 0; - for (i = 0; i < n; i++) - v = (v << 8) | getbyte(b); - return v; -} - -static -Buffer -makebuffer(void *p, uintptr size) -{ - Buffer r; - assert(size < 0x40000000); - - r.data = (uchar*) p; - r.size = (int)size; - r.cursor = 0; - - return r; -} - -static -Buffer -slice(Buffer *b, int o, int s) -{ - Buffer r = makebuffer(nil, 0); - if (o < 0 || s < 0 || o > b->size || s > b->size - o) - return r; - - r.data = b->data + o; - r.size = s; - - return r; -} - -static -Buffer -cff_index(Buffer *b) -{ - int count, start, offsize; - - start = b->cursor; - count = getshort(b); - if (count) { - offsize = getbyte(b); - assert(offsize >= 1 && offsize <= 4); - skip(b, offsize * count); - skip(b, getbytes(b, offsize) - 1); - } - return slice(b, start, b->cursor - start); -} - -static -uint32 -cff_int(Buffer *b) -{ - int b0 = getbyte(b); - if (b0 >= 32 && b0 <= 246) return +b0 - 139; - else if (b0 >= 247 && b0 <= 250) return +(b0 - 247)*256 + getbyte(b) + 108; - else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - getbyte(b) - 108; - else if (b0 == 28) return +getshort(b); - else if (b0 == 29) return +getint(b); - - panicf("unreachable"); - return 0; -} - -static -void -skip_operand(Buffer *b) { - int v, b0 = peek(b); - assert(b0 >= 28); - if (b0 == 30) { - skip(b, 1); - while (b->cursor < b->size) { - v = getbyte(b); - if ((v & 0xF) == 0xF || (v >> 4) == 0xF) - break; - } - } else { - cff_int(b); - } -} - -static -Buffer -dict_get(Buffer *b, int key) -{ - seek(b, 0); - while (b->cursor < b->size) { - int start = b->cursor, end, op; - while (peek(b) >= 28) - skip_operand(b); - end = b->cursor; - op = getbyte(b); - if (op == 12) op = getbyte(b) | 0x100; - if (op == key) return slice(b, start, end-start); - } - return slice(b, 0, 0); -} - -static -void -dict_get_ints(Buffer *b, int key, int outcount, uint32 *out) -{ - int i; - Buffer operands = dict_get(b, key); - for (i = 0; i < outcount && operands.cursor < operands.size; i++) - out[i] = cff_int(&operands); -} - -static -int -cff_index_count(Buffer *b) -{ - seek(b, 0); - return getshort(b); -} - -static -Buffer -cff_index_get(Buffer b, int i) -{ - int count, offsize, start, end; - seek(&b, 0); - count = getshort(&b); - offsize = getbyte(&b); - assert(i >= 0 && i < count); - assert(offsize >= 1 && offsize <= 4); - skip(&b, i*offsize); - start = getbytes(&b, offsize); - end = getbytes(&b, offsize); - return slice(&b, 2+(count+1)*offsize+start, end - start); -} - -// ----------------------------------------------------------------------- -// accessors to parse data from file - -/* - * on platforms that don't allow misaligned reads, if we want to allow - * truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE - */ - -#define ttbyte(p) (* (uchar *) (p)) -#define ttchar(p) (* (char *) (p)) -#define ttfixed(p) ttlong(p) - -static ushort ttushort(uchar *p) { return p[0]*256 + p[1]; } -static short ttshort(uchar *p) { return p[0]*256 + p[1]; } -static uint32 ttulong(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } -static int32 ttlong(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } - -#define ttf·tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3)) -#define ttf·tag(p,str) ttf·tag4(p,str[0],str[1],str[2],str[3]) - -static -int -isfont(uchar *font) -{ - // check the version number - if (ttf·tag4(font, '1',0,0,0)) return 1; // TrueType 1 - if (ttf·tag(font, "typ1")) return 1; // TrueType with type 1 font -- we don't support this! - if (ttf·tag(font, "OTTO")) return 1; // OpenType with CFF - if (ttf·tag4(font, 0,1,0,0)) return 1; // OpenType 1.0 - if (ttf·tag(font, "true")) return 1; // Apple specification for TrueType fonts - - return 0; -} - -// @OPTIMIZE: binary search -static -uint32 -find_table(uchar *data, uint32 offset, char *tag) -{ - int i; - int32 ntab; - uint32 tabdir, loc; - - ntab = ttushort(data+offset+4); - tabdir = offset + 12; - for (i=0; i < ntab; ++i) { - loc = tabdir + 16*i; - if (ttf·tag(data+loc+0, tag)) - return ttulong(data+loc+8); - } - return 0; -} - -int -font·offsetfor(uchar *collection, int index) -{ - // if it's just a font, there's only one valid index - if (isfont(collection)) - return index == 0 ? 0 : -1; - - // check if it's a TTC - if (ttf·tag(collection, "ttcf")) { - // version 1? - if (ttulong(collection+4) == 0x00010000 || ttulong(collection+4) == 0x00020000) { - int32 n = ttlong(collection+8); - if (index >= n) - return -1; - return ttulong(collection+12+index*4); - } - } - return -1; -} - -int -font·number(uchar *collection) -{ - // if it's just a font, there's only one valid font - if (isfont(collection)) - return 1; - - // check if it's a TTC - if (ttf·tag(collection, "ttcf")) { - // version 1? - if (ttulong(collection+4) == 0x00010000 || ttulong(collection+4) == 0x00020000) { - return ttlong(collection+8); - } - } - return 0; -} - -static -Buffer -get_subrs(Buffer cff, Buffer fontdict) -{ - uint32 subrsoff = 0, private_loc[2] = { 0, 0 }; - Buffer pdict; - dict_get_ints(&fontdict, 18, 2, private_loc); - if (!private_loc[1] || !private_loc[0]) - return makebuffer(nil, 0); - pdict = slice(&cff, private_loc[1], private_loc[0]); - dict_get_ints(&pdict, 19, 1, &subrsoff); - if (!subrsoff) - return makebuffer(nil, 0); - seek(&cff, private_loc[1]+subrsoff); - return cff_index(&cff); -} - -// since most people won't use this, find this table the first time it's needed -static -int -get_svg(font·Info *info) -{ - uint32 t; - if (info->svg < 0) { - t = find_table(info->data, info->fontstart, "SVG "); - if (t) { - uint32 offset = ttulong(info->data + t + 2); - info->svg = t + offset; - } else { - info->svg = 0; - } - } - return info->svg; -} - -static -int -init(font·Info *info, uchar *data, int offset) -{ - uint32 cmap, t; - int32 i, ntab; - - info->data = data; - info->fontstart = offset; - info->cff = makebuffer(nil, 0); - - cmap = find_table(data, offset, "cmap"); // required - info->loca = find_table(data, offset, "loca"); // required - info->head = find_table(data, offset, "head"); // required - info->glyf = find_table(data, offset, "glyf"); // required - info->hhea = find_table(data, offset, "hhea"); // required - info->hmtx = find_table(data, offset, "hmtx"); // required - info->kern = find_table(data, offset, "kern"); // not required - info->gpos = find_table(data, offset, "GPOS"); // not required - info->fpgm = find_table(data, offset, "fpgm"); // not required (execute once per load) - info->cvt = find_table(data, offset, "cvt"); // not required (execute once per resize) - - printf("cvt found at %d\n", info->cvt); - printf("fpgm found at %d\n", info->cvt); - - if (!cmap || !info->head || !info->hhea || !info->hmtx) - return 1; - if (info->glyf) { - // required for truetype - if (!info->loca) - return 1; - } else { - // initialization for CFF / Type2 fonts (OTF) - Buffer b, topdict, topdictidx; - uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0; - uint32 cff; - - cff = find_table(data, offset, "CFF "); - if (!cff) - return 1; - - info->fontdicts = makebuffer(nil, 0); - info->fdselect = makebuffer(nil, 0); - - // @TODO this should use size from table (not 512MB) - info->cff = makebuffer(data+cff, 512*1024*1024); - b = info->cff; - - // read the header - skip(&b, 2); - seek(&b, getbyte(&b)); // hdrsize - - // @TODO the name INDEX could list multiple fonts, - // but we just use the first one. - cff_index(&b); // name INDEX - topdictidx = cff_index(&b); - topdict = cff_index_get(topdictidx, 0); - cff_index(&b); // string INDEX - info->gsubrs = cff_index(&b); - - dict_get_ints(&topdict, 17, 1, &charstrings); - dict_get_ints(&topdict, 0x100 | 6, 1, &cstype); - dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff); - dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff); - info->subrs = get_subrs(b, topdict); - - // we only support Type 2 charstrings - if (cstype != 2) - return 1; - if (charstrings == 0) - return 1; - - if (fdarrayoff) { - // looks like a CID font - if (!fdselectoff) - return 1; - seek(&b, fdarrayoff); - info->fontdicts = cff_index(&b); - info->fdselect = slice(&b, fdselectoff, b.size-fdselectoff); - } - - seek(&b, charstrings); - info->charstrings = cff_index(&b); - } - - t = find_table(data, offset, "maxp"); - if (t) - info->numglyphs = ttushort(data+t+4); - else - info->numglyphs = 0xffff; - - info->svg = -1; - - // find a cmap encoding table we understand *now* to avoid searching - // later. (todo: could make this installable) - // the same regardless of glyph. - ntab = ttushort(data + cmap + 2); - info->index_map = 0; - for (i=0; i < ntab; ++i) { - uint32 encoding_record = cmap + 4 + 8 * i; - // find an encoding we understand: - switch(ttushort(data+encoding_record)) { - case font·platform_unicode: - // Mac/iOS has these - // all the encodingIDs are unicode, so we don't bother to check it - info->index_map = cmap + ttulong(data+encoding_record+4); - break; - default: - ; - } - } - if (info->index_map == 0) { - return 1; - } - - info->index_fmt = ttushort(data+info->head + 50); - return 0; -} - -font·Info * -font·make(uchar *file, int offset, mem·Allocator mem, void *heap) -{ - int err; - font·Info *info; - - info = mem.alloc(heap, 1, sizeof(*info)); - info->mal = mem; - info->heap = heap; - - err = init(info, file, offset); - if (err) { - mem.free(heap, info); - info = nil; - } - - return info; -} - -void -font·free(font·Info *info) -{ - void *heap; - mem·Allocator mem; - - heap = info->heap; - mem = info->mal; - - mem.free(heap, info); -} - -int -font·glyph_index(font·Info *info, int unicode_codepoint) -{ - uchar *data; - ushort fmt; - uint32 index_map; - union { - int32 bytes; - struct { - uint32 first; - uint32 count; - }; - struct { - ushort segcount; - ushort srchrange; - ushort entrysel; - ushort rangeshft; - - uint32 end; - uint32 search; - }; - struct { - uint32 begg, begc, endc, ngroups; - int32 low, mid, high; - }; - } v; - - data = info->data; - index_map = info->index_map; - - /* - * useful discussion of table formats: - * https://docs.microsoft.com/en-us/typography/opentype/spec/cmap - */ - fmt = ttushort(data + index_map + 0); - switch (fmt) { - case 0: /* apple byte encoding */ - v.bytes = ttushort(data + index_map + 2); - if (unicode_codepoint < v.bytes-6) - return ttbyte(data + index_map + 6 + unicode_codepoint); - return 0; - - case 6: - v.first = ttushort(data + index_map + 6); - v.count = ttushort(data + index_map + 8); - if ((uint32)unicode_codepoint >= v.first && (uint32)unicode_codepoint < v.first+v.count) - return ttushort(data + index_map + 10 + (unicode_codepoint - v.first)*2); - return 0; - - case 2: - panicf("high-byte mapping for asian characters not implemented"); - return 0; - - case 4: /* standard mapping for windows fonts: binary search collection of ranges */ - v.segcount = ttushort(data+index_map+6) >> 1; - v.srchrange = ttushort(data+index_map+8) >> 1; - v.entrysel = ttushort(data+index_map+10); - v.rangeshft = ttushort(data+index_map+12) >> 1; - - // do a binary search of the segments - v.end = index_map + 14; - v.search = v.end; - - if (unicode_codepoint > 0xffff) - return 0; - - // they lie from endCount .. endCount + segCount - // but searchRange is the nearest power of two, so... - if (unicode_codepoint >= ttushort(data + v.search + v.rangeshft*2)) - v.search += v.rangeshft*2; - - // now decrement to bias correctly to find smallest - v.search -= 2; - while (v.entrysel) { - ushort end; - v.srchrange >>= 1; - end = ttushort(data + v.search + v.srchrange*2); - if (unicode_codepoint > end) - v.search += v.srchrange*2; - --v.entrysel; - } - v.search += 2; - - { - ushort offset, start; - ushort item = (ushort) ((v.search - v.end) >> 1); - - assert(unicode_codepoint <= ttushort(data + v.end+ 2*item)); - start = ttushort(data + index_map + 14 + v.segcount*2 + 2 + 2*item); - if (unicode_codepoint < start) - return 0; - - offset = ttushort(data + index_map + 14 + v.segcount*6 + 2 + 2*item); - if (offset == 0) - return (ushort) (unicode_codepoint + ttshort(data + index_map + 14 + v.segcount*4 + 2 + 2*item)); - - return ttushort(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + v.segcount*6 + 2 + 2*item); - } - - case 12: case 13: - v.ngroups = ttulong(data+index_map+12); - v.low = 0; v.high = (int32)v.ngroups; - // Binary search the right group. - while (v.low < v.high) { - v.mid = v.low + ((v.high-v.low) >> 1); // rounds down, so low <= mid < high - v.begc = ttulong(data+index_map+16+v.mid*12); - v.endc = ttulong(data+index_map+16+v.mid*12+4); - if ((uint32)unicode_codepoint < v.begc) - v.high = v.mid; - else if ((uint32) unicode_codepoint > v.endc) - v.low = v.mid+1; - else { - v.begg = ttulong(data+index_map+16+v.mid*12+8); - if (fmt == 12) - return v.begg + unicode_codepoint-v.begc; - else // fmt == 13 - return v.begg; - } - } - return 0; // not found - - default: - ; - } - - // @TODO - assert(0); - return 0; -} - -int -font·code_shape(font·Info *info, int unicode_codepoint, font·Vertex **verts) -{ - return font·glyph_shape(info, font·glyph_index(info, unicode_codepoint), verts); -} - -static -void -setvertex(font·Vertex *v, uchar type, int32 x, int32 y, int32 cx, int32 cy) -{ - v->type = type; - v->x = (slong)x; - v->y = (slong)y; - v->cx = (slong)cx; - v->cy = (slong)cy; -} - -static -int -glyph_offset(font·Info *info, int glyph_index) -{ - int gb, ge; - - assert(!info->cff.size); - - if (glyph_index >= info->numglyphs) return -1; // glyph index out of range - if (info->index_fmt >= 2) return -1; // unknown index->glyph map format - - if (info->index_fmt == 0) { - gb = info->glyf + 2*ttushort(info->data + info->loca + 2*glyph_index); - ge = info->glyf + 2*ttushort(info->data + info->loca + 2*glyph_index + 2); - } else { - gb = info->glyf + 1*ttulong (info->data + info->loca + 4*glyph_index); - ge = info->glyf + 1*ttulong (info->data + info->loca + 4*glyph_index + 4); - } - - return (gb==ge) ? -1 : gb; // if length is 0, return -1 -} - -static int glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); - -int -font·glyph_box(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) -{ - int g; - if (info->cff.size) { - glyph_info_t2(info, glyph_index, x0, y0, x1, y1); - } else { - g = glyph_offset(info, glyph_index); - if (g < 0) - return 0; - - if (x0) *x0 = ttshort(info->data + g + 2); - if (y0) *y0 = ttshort(info->data + g + 4); - if (x1) *x1 = ttshort(info->data + g + 6); - if (y1) *y1 = ttshort(info->data + g + 8); - } - - return 1; -} - -int -font·code_box(font·Info *info, int codepoint, int *x0, int *y0, int *x1, int *y1) -{ - return font·glyph_box(info, font·glyph_index(info,codepoint), x0,y0,x1,y1); -} - -int -font·glyph_empty(font·Info *info, int glyph_index) -{ - int g; - short numc; - - if (info->cff.size) - return glyph_info_t2(info, glyph_index, nil, nil, nil, nil) == 0; - - g = glyph_offset(info, glyph_index); - if (g < 0) - return 1; - - numc = ttshort(info->data + g); - return numc == 0; -} - -static -int -close_shape(font·Vertex *verts, int numv, int was_off, int start_off, - int32 sx, int32 sy, int32 scx, int32 scy, int32 cx, int32 cy) -{ - if (start_off) { - if (was_off) - setvertex(&verts[numv++], font·Vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy); - setvertex(&verts[numv++], font·Vcurve, sx,sy,scx,scy); - } else { - if (was_off) - setvertex(&verts[numv++], font·Vcurve,sx,sy,cx,cy); - else - setvertex(&verts[numv++], font·Vline,sx,sy,0,0); - } - return numv; -} - -static -int -glyph_shape_tt(font·Info *info, int glyph_index, font·Vertex **pverts) -{ - short numc; - uchar *contourend; - uchar *data = info->data; - font·Vertex *verts = nil; - int numv = 0; - int g = glyph_offset(info, glyph_index); - - *pverts = nil; - - /* glyph not found */ - if (g < 0) - return 0; - - numc = ttshort(data + g); - - if (numc > 0) { - uchar flags=0, flagcount; - int32 nins, i,j=0,m,n, next_move, was_off=0, off, start_off=0; - int32 x,y,cx,cy,sx,sy,scx,scy; - - uchar *points; - contourend = data + g + 10; - nins = ttushort(data + g + 10 + numc * 2); - points = data + g + 10 + 2*numc + 2 + nins; - printf("number of instructions %d\n", nins); - - n = 1+ttushort(contourend + numc*2-2); - - m = n + 2*numc; // a loose bound on how many verts we might need - verts = info->alloc(info->heap, m, sizeof(verts[0])); - if (verts == 0) - return 0; - - next_move = 0; - flagcount = 0; - - // in first pass, we load uninterpreted data into the allocated array - // above, shifted to the end of the array so we won't overwrite it when - // we create our final data starting from the front - - off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated - - // first load flags - - for (i = 0; i < n; ++i) { - if (flagcount == 0) { - flags = *points++; - if (flags & 8) - flagcount = *points++; - } else - --flagcount; - verts[off+i].type = flags; - } - - // now load x coordinates - x=0; - for (i = 0; i < n; ++i) { - flags = verts[off+i].type; - if (flags & 2) { - slong dx = *points++; - x += (flags & 16) ? dx : -dx; // ??? - } else { - if (!(flags & 16)) { - x = x + (short)(points[0]*256 + points[1]); // this cast is critical - points += 2; - } - } - verts[off+i].x = (slong)x; - } - - // now load y coordinates - y = 0; - for (i = 0; i < n; ++i) { - flags = verts[off+i].type; - if (flags & 4) { - slong dy = *points++; - y += (flags & 32) ? dy : -dy; // ??? - } else { - if (!(flags & 32)) { - y = y + (short)(points[0]*256 + points[1]); // this cast is critical - points += 2; - } - } - verts[off+i].y = (slong)y; - } - - // now convert them to our format - numv = 0; - sx = sy = cx = cy = scx = scy = 0; - for (i=0; i < n; ++i) { - flags = verts[off+i].type; - x = (slong)verts[off+i].x; - y = (slong)verts[off+i].y; - - if (next_move == i) { - if (i != 0) - numv = close_shape(verts, numv, was_off, start_off, sx,sy,scx,scy,cx,cy); - - // now start the new one - start_off = !(flags & 1); - if (start_off) { - // if we start off with an off-curve point, then when we need to find a point on the curve - // where we can start, and we need to save some state for when we wraparound. - scx = x; - scy = y; - if (!(verts[off+i+1].type & 1)) { - // next point is also a curve point, so interpolate an on-point curve - sx = (x + (int32) verts[off+i+1].x) >> 1; - sy = (y + (int32) verts[off+i+1].y) >> 1; - } else { - // otherwise just use the next point as our start point - sx = (int32) verts[off+i+1].x; - sy = (int32) verts[off+i+1].y; - ++i; // we're using point i+1 as the starting point, so skip it - } - } else { - sx = x; - sy = y; - } - setvertex(&verts[numv++], font·Vmove,sx,sy,0,0); - was_off = 0; - next_move = 1 + ttushort(contourend+j*2); - ++j; - } else { - if (!(flags & 1)) { // if it's a curve - if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint - setvertex(&verts[numv++], font·Vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy); - cx = x; - cy = y; - was_off = 1; - } else { - if (was_off) - setvertex(&verts[numv++], font·Vcurve, x,y, cx, cy); - else - setvertex(&verts[numv++], font·Vline, x,y,0,0); - was_off = 0; - } - } - } - numv = close_shape(verts, numv, was_off, start_off, sx, sy, scx, scy, cx, cy); - } else if (numc < 0) { - // Compound shapes. - int more = 1; - uchar *comp = data + g + 10; - numv = 0; - verts = 0; - while (more) { - ushort flags, gidx; - int comp_num_verts = 0, i; - font·Vertex *comp_verts = 0, *tmp = 0; - float mtx[6] = {1,0,0,1,0,0}, m, n; - - flags = ttshort(comp); comp+=2; - gidx = ttshort(comp); comp+=2; - - if (flags & 2) { // XY values - if (flags & 1) { // shorts - mtx[4] = ttshort(comp); comp+=2; - mtx[5] = ttshort(comp); comp+=2; - } else { - mtx[4] = ttchar(comp); comp+=1; - mtx[5] = ttchar(comp); comp+=1; - } - } - else { - // @TODO handle matching point - assert(0); - } - if (flags & (1<<3)) { // WE_HAVE_A_SCALE - mtx[0] = mtx[3] = ttshort(comp)/16384.0f; comp+=2; - mtx[1] = mtx[2] = 0; - } else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE - mtx[0] = ttshort(comp)/16384.0f; comp+=2; - mtx[1] = mtx[2] = 0; - mtx[3] = ttshort(comp)/16384.0f; comp+=2; - } else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO - mtx[0] = ttshort(comp)/16384.0f; comp+=2; - mtx[1] = ttshort(comp)/16384.0f; comp+=2; - mtx[2] = ttshort(comp)/16384.0f; comp+=2; - mtx[3] = ttshort(comp)/16384.0f; comp+=2; - } - - // Find transformation scales. - m = (float) sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]); - n = (float) sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]); - - // Get indexed glyph. - comp_num_verts = font·glyph_shape(info, gidx, &comp_verts); - if (comp_num_verts > 0) { - // Transform verts. - for (i = 0; i < comp_num_verts; ++i) { - font·Vertex* v = &comp_verts[i]; - short x,y; - x=v->x; y=v->y; - v->x = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); - v->y = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); - x=v->cx; y=v->cy; - v->cx = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); - v->cy = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); - } - // Append verts. - tmp = info->alloc(info->heap, numv+comp_num_verts, sizeof(font·Vertex)); - if (!tmp) { - if (verts) info->free(info->heap, verts); - if (comp_verts) info->free(info->heap, comp_verts); - return 0; - } - if (numv > 0) - memcpy(tmp, verts, numv*sizeof(font·Vertex)); - - memcpy(tmp+numv, comp_verts, comp_num_verts*sizeof(font·Vertex)); - - if (verts) - info->free(info->heap, verts); - - verts = tmp; - info->free(info->heap, comp_verts); - numv += comp_num_verts; - } - // More components ? - more = flags & (1<<5); - } - } - - *pverts = verts; - return numv; -} - -typedef struct -{ - int bounds; - int started; - float first_x, first_y; - float x, y; - int32 min_x, max_x, min_y, max_y; - - font·Vertex *pverts; - int numv; -} csctx; - -#define CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, nil, 0} - -static -void -track_vertex(csctx *c, int32 x, int32 y) -{ - if (x > c->max_x || !c->started) c->max_x = x; - if (y > c->max_y || !c->started) c->max_y = y; - if (x < c->min_x || !c->started) c->min_x = x; - if (y < c->min_y || !c->started) c->min_y = y; - c->started = 1; -} - -/* decode curve sequences */ - -static -void -csctx_v(csctx *c, uchar type, int32 x, int32 y, int32 cx, int32 cy, int32 cx1, int32 cy1) -{ - if (c->bounds) { - track_vertex(c, x, y); - if (type == font·Vcubic) { - track_vertex(c, cx, cy); - track_vertex(c, cx1, cy1); - } - } else { - setvertex(&c->pverts[c->numv], type, x, y, cx, cy); - c->pverts[c->numv].cx1 = (short) cx1; - c->pverts[c->numv].cy1 = (short) cy1; - } - c->numv++; -} - -static -void -csctx_close_shape(csctx *ctx) -{ - if (ctx->first_x != ctx->x || ctx->first_y != ctx->y) - csctx_v(ctx, font·Vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0); -} - -static -void -csctx_rmove_to(csctx *ctx, float dx, float dy) -{ - csctx_close_shape(ctx); - ctx->first_x = ctx->x = ctx->x + dx; - ctx->first_y = ctx->y = ctx->y + dy; - csctx_v(ctx, font·Vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); -} - -static -void -csctx_rline_to(csctx *ctx, float dx, float dy) -{ - ctx->x += dx; - ctx->y += dy; - csctx_v(ctx, font·Vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); -} - -static -void -csctx_rccurve_to(csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3) -{ - float cx1 = ctx->x + dx1; - float cy1 = ctx->y + dy1; - float cx2 = cx1 + dx2; - float cy2 = cy1 + dy2; - - ctx->x = cx2 + dx3; - ctx->y = cy2 + dy3; - csctx_v(ctx, font·Vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2); -} - -static -Buffer -get_subr(Buffer idx, int n) -{ - int count = cff_index_count(&idx); - int bias = 107; - - if (count >= 33900) - bias = 32768; - else if (count >= 1240) - bias = 1131; - n += bias; - - if (n < 0 || n >= count) - return makebuffer(nil, 0); - - return cff_index_get(idx, n); -} - -static -Buffer -cid_get_glyph_subrs(font·Info *info, int glyph_index) -{ - Buffer fdselect = info->fdselect; - int nranges, start, end, v, fmt, fdselector = -1, i; - - seek(&fdselect, 0); - fmt = getbyte(&fdselect); - if (fmt == 0) { - // untested - skip(&fdselect, glyph_index); - fdselector = getbyte(&fdselect); - } else if (fmt == 3) { - nranges = getshort(&fdselect); - start = getshort(&fdselect); - for (i = 0; i < nranges; i++) { - v = getbyte(&fdselect); - end = getshort(&fdselect); - if (glyph_index >= start && glyph_index < end) { - fdselector = v; - break; - } - start = end; - } - } - if (fdselector == -1) makebuffer(nil, 0); - return get_subrs(info->cff, cff_index_get(info->fontdicts, fdselector)); -} - -static -int -run_charstring(font·Info *info, int glyph_index, csctx *c) -{ - int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0; - int has_subrs = 0, clear_stack; - float s[48]; - Buffer subr_stack[10], subrs = info->subrs, b; - float f; - - // this currently ignores the initial width value, which isn't needed if we have hmtx - b = cff_index_get(info->charstrings, glyph_index); - while (b.cursor < b.size) { - i = 0; - clear_stack = 1; - b0 = getbyte(&b); - switch (b0) { - // @TODO implement hinting - case 0x13: // hintmask - case 0x14: // cntrmask - if (in_header) - maskbits += (sp / 2); // implicit "vstem" - in_header = 0; - skip(&b, (maskbits + 7) / 8); - break; - - case 0x01: // hstem - case 0x03: // vstem - case 0x12: // hstemhm - case 0x17: // vstemhm - maskbits += (sp / 2); - break; - - case 0x15: // rmoveto - in_header = 0; - if (sp < 2) { - errorf("rmoveto stack"); - return 0; - } - csctx_rmove_to(c, s[sp-2], s[sp-1]); - break; - - case 0x04: // vmoveto - in_header = 0; - if (sp < 1) { - errorf("vmoveto stack"); - return 0; - } - csctx_rmove_to(c, 0, s[sp-1]); - break; - - case 0x16: // hmoveto - in_header = 0; - if (sp < 1) { - errorf("hmoveto stack"); - return 0; - } - csctx_rmove_to(c, s[sp-1], 0); - break; - - case 0x05: // rlineto - if (sp < 2) { - errorf("rlineto stack"); - return 0; - } - for (; i + 1 < sp; i += 2) - csctx_rline_to(c, s[i], s[i+1]); - break; - - // hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical - // starting from a different place. - - case 0x07: // vlineto - if (sp < 1) { - errorf("vlineto stack"); - return 0; - } - goto vlineto; - case 0x06: // hlineto - if (sp < 1) { - errorf("hlineto stack"); - return 0; - } - for (;;) { - if (i >= sp) break; - csctx_rline_to(c, s[i], 0); - i++; - vlineto: - if (i >= sp) break; - csctx_rline_to(c, 0, s[i]); - i++; - } - break; - - case 0x1F: // hvcurveto - if (sp < 4) { - errorf("hvcurveto stack"); - return 0; - } - goto hvcurveto; - case 0x1E: // vhcurveto - if (sp < 4) { - errorf("vhcurveto stack"); - return 0; - } - for (;;) { - if (i + 3 >= sp) break; - csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f); - i += 4; - hvcurveto: - if (i + 3 >= sp) break; - csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]); - i += 4; - } - break; - - case 0x08: // rrcurveto - if (sp < 6) { - errorf("rcurveline stack"); - return 0; - } - for (; i + 5 < sp; i += 6) - csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); - break; - - case 0x18: // rcurveline - if (sp < 8) { - errorf("rcurveline stack"); - return 0; - } - for (; i + 5 < sp - 2; i += 6) - csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); - if (i + 1 >= sp) { - errorf("rcurveline stack"); - return 0; - } - csctx_rline_to(c, s[i], s[i+1]); - break; - - case 0x19: // rlinecurve - if (sp < 8) { - errorf("rlinecurve stack"); - return 0; - } - for (; i + 1 < sp - 6; i += 2) - csctx_rline_to(c, s[i], s[i+1]); - if (i + 5 >= sp) { - errorf("rlinecurve stack"); - return 0; - } - csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); - break; - - case 0x1A: // vvcurveto - case 0x1B: // hhcurveto - if (sp < 4) { - errorf("(vv|hh)curveto stack"); - return 0; - } - f = 0.0; - if (sp & 1) { f = s[i]; i++; } - for (; i + 3 < sp; i += 4) { - if (b0 == 0x1B) - csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0); - else - csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]); - f = 0.0; - } - break; - - case 0x0A: // callsubr - if (!has_subrs) { - if (info->fdselect.size) - subrs = cid_get_glyph_subrs(info, glyph_index); - has_subrs = 1; - } - /* fallthrough */ - case 0x1D: // callgsubr - if (sp < 1) { - errorf("call(g|)subr stack"); - return 0; - } - v = (int)s[--sp]; - if (subr_stack_height >= 10) { - errorf("recursion limit"); - return 0; - } - subr_stack[subr_stack_height++] = b; - b = get_subr(b0 == 0x0A ? subrs : info->gsubrs, v); - if (b.size == 0) { - errorf("subr not found"); - return 0; - } - b.cursor = 0; - clear_stack = 0; - break; - - case 0x0B: // return - if (subr_stack_height <= 0) { - errorf("return outside subr"); - return 0; - } - b = subr_stack[--subr_stack_height]; - clear_stack = 0; - break; - - case 0x0E: // endchar - csctx_close_shape(c); - return 1; - - case 0x0C: { // two-byte escape - float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6; - float dx, dy; - int b1 = getbyte(&b); - switch (b1) { - // @TODO These "flex" implementations ignore the flex-depth and resolution, - // and always draw beziers. - case 0x22: // hflex - if (sp < 7) { - errorf("hflex stack"); - return 0; - } - dx1 = s[0]; - dx2 = s[1]; - dy2 = s[2]; - dx3 = s[3]; - dx4 = s[4]; - dx5 = s[5]; - dx6 = s[6]; - csctx_rccurve_to(c, dx1, 0, dx2, +dy2, dx3, 0); - csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0); - break; - - case 0x23: // flex - if (sp < 13) { - errorf("flex stack"); - return 0; - } - dx1 = s[0]; - dy1 = s[1]; - dx2 = s[2]; - dy2 = s[3]; - dx3 = s[4]; - dy3 = s[5]; - dx4 = s[6]; - dy4 = s[7]; - dx5 = s[8]; - dy5 = s[9]; - dx6 = s[10]; - dy6 = s[11]; - //fd is s[12] - csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); - csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); - break; - - case 0x24: // hflex1 - if (sp < 9) { - errorf("hflex1 stack"); - return 0; - } - dx1 = s[0]; - dy1 = s[1]; - dx2 = s[2]; - dy2 = s[3]; - dx3 = s[4]; - dx4 = s[5]; - dx5 = s[6]; - dy5 = s[7]; - dx6 = s[8]; - csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0); - csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5)); - break; - - case 0x25: // flex1 - if (sp < 11) { - errorf("flex1 stack"); - return 0; - } - dx1 = s[0]; - dy1 = s[1]; - dx2 = s[2]; - dy2 = s[3]; - dx3 = s[4]; - dy3 = s[5]; - dx4 = s[6]; - dy4 = s[7]; - dx5 = s[8]; - dy5 = s[9]; - dx6 = dy6 = s[10]; - dx = dx1+dx2+dx3+dx4+dx5; - dy = dy1+dy2+dy3+dy4+dy5; - if (fabs(dx) > fabs(dy)) - dy6 = -dy; - else - dx6 = -dx; - csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); - csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); - break; - - default: - panicf("unimplemented"); - return 0; - } - } break; - - default: - if (b0 != 255 && b0 != 28 && (b0 < 32 || b0 > 254)) { - errorf("reserved operator"); - return 0; - } - - // push immediate - if (b0 == 255) { - f = (float)(int32)getint(&b) / 0x10000; - } else { - skip(&b, -1); - f = (float)(short)cff_int(&b); - } - if (sp >= 48) { - errorf("push stack overflow"); - return 0; - } - s[sp++] = f; - clear_stack = 0; - break; - } - if (clear_stack) sp = 0; - } - - errorf("no endchar"); - return 0; - -} - -static -int -glyph_shape_t2(font·Info *info, int glyph_index, font·Vertex **pverts) -{ - // runs the charstring twice, once to count and once to output (to avoid realloc) - csctx count_ctx = CSCTX_INIT(1); - csctx output_ctx = CSCTX_INIT(0); - - if (run_charstring(info, glyph_index, &count_ctx)) { - *pverts = info->alloc(info->heap, count_ctx.numv, sizeof(font·Vertex)); - output_ctx.pverts = *pverts; - if (run_charstring(info, glyph_index, &output_ctx)) { - assert(output_ctx.numv == count_ctx.numv); - return output_ctx.numv; - } - } - - *pverts = nil; - return 0; -} - -static -int -glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) -{ - - csctx c = CSCTX_INIT(1); - int r = run_charstring(info, glyph_index, &c); - if (x0) *x0 = r ? c.min_x : 0; - if (y0) *y0 = r ? c.min_y : 0; - if (x1) *x1 = r ? c.max_x : 0; - if (y1) *y1 = r ? c.max_y : 0; - - return r ? c.numv : 0; -} - -int -font·glyph_shape(font·Info *info, int glyph_index, font·Vertex **pverts) -{ - if (!info->cff.size) - return glyph_shape_tt(info, glyph_index, pverts); - else - return glyph_shape_t2(info, glyph_index, pverts); -} - -void -font·glyph_hmetrics(font·Info *info, int glyph_index, int *adv, int *lsb) -{ - ushort n; - - n = ttushort(info->data+info->hhea + 34); - if (glyph_index < n) { - if (adv) *adv = ttshort(info->data + info->hmtx + 4*glyph_index); - if (lsb) *lsb = ttshort(info->data + info->hmtx + 4*glyph_index + 2); - } else { - if (adv) *adv = ttshort(info->data + info->hmtx + 4*(n-1)); - if (lsb) *lsb = ttshort(info->data + info->hmtx + 4*n + 2*(glyph_index - n)); - } -} - -int -font·kerntablen(font·Info *info) -{ - uchar *data = info->data + info->kern; - - // we only look at the first table. it must be 'horizontal' and format 0. - if (!info->kern) - return 0; - if (ttushort(data+2) < 1) // number of tables, need at least 1 - return 0; - if (ttushort(data+8) != 1) // horizontal flag must be set in format - return 0; - - return ttushort(data+10); -} - -int -font·kerntab(font·Info *info, font·TabElt* table, int table_length) -{ - uchar *data = info->data + info->kern; - int k, length; - - // we only look at the first table. it must be 'horizontal' and format 0. - if (!info->kern) - return 0; - if (ttushort(data+2) < 1) // number of tables, need at least 1 - return 0; - if (ttushort(data+8) != 1) // horizontal flag must be set in format - return 0; - - length = ttushort(data+10); - if (table_length < length) - length = table_length; - - for (k = 0; k < length; k++) - { - table[k].glyph1 = ttushort(data+18+(k*6)); - table[k].glyph2 = ttushort(data+20+(k*6)); - table[k].advance = ttshort(data+22+(k*6)); - } - - return length; -} - -static -int -glyph_kernadvance(font·Info *info, int glyph1, int glyph2) -{ - uchar *data = info->data + info->kern; - uint32 needle, straw; - int l, r, m; - - // we only look at the first table. it must be 'horizontal' and format 0. - if (!info->kern) - return 0; - if (ttushort(data+2) < 1) // number of tables, need at least 1 - return 0; - if (ttushort(data+8) != 1) // horizontal flag must be set in format - return 0; - - l = 0; - r = ttushort(data+10) - 1; - needle = glyph1 << 16 | glyph2; - while (l <= r) { - m = (l + r) >> 1; - straw = ttulong(data+18+(m*6)); // note: unaligned read - if (needle < straw) - r = m - 1; - else if (needle > straw) - l = m + 1; - else - return ttshort(data+22+(m*6)); - } - return 0; -} - -static -int32 -coverage_index(uchar *coverageTable, int glyph) -{ - ushort coverageFormat = ttushort(coverageTable); - switch(coverageFormat) { - case 1: { - ushort glyphCount = ttushort(coverageTable + 2); - - // Binary search. - int32 l=0, r=glyphCount-1, m; - int straw, needle=glyph; - while (l <= r) { - uchar *glyphArray = coverageTable + 4; - ushort glyphID; - m = (l + r) >> 1; - glyphID = ttushort(glyphArray + 2 * m); - straw = glyphID; - if (needle < straw) - r = m - 1; - else if (needle > straw) - l = m + 1; - else { - return m; - } - } - } break; - - case 2: { - ushort rangeCount = ttushort(coverageTable + 2); - uchar *rangeArray = coverageTable + 4; - - // Binary search. - int32 l=0, r=rangeCount-1, m; - int strawStart, strawEnd, needle=glyph; - while (l <= r) { - uchar *rangeRecord; - m = (l + r) >> 1; - rangeRecord = rangeArray + 6 * m; - strawStart = ttushort(rangeRecord); - strawEnd = ttushort(rangeRecord + 2); - if (needle < strawStart) - r = m - 1; - else if (needle > strawEnd) - l = m + 1; - else { - ushort startCoverageIndex = ttushort(rangeRecord + 4); - return startCoverageIndex + glyph - strawStart; - } - } - } break; - - default: { - // There are no other cases. - assert(0); - } break; - } - - return -1; -} - -static -int32 -glyph_class(uchar *classDefTable, int glyph) -{ - ushort classDefFormat = ttushort(classDefTable); - switch(classDefFormat) - { - case 1: { - ushort startGlyphID = ttushort(classDefTable + 2); - ushort glyphCount = ttushort(classDefTable + 4); - uchar *classDef1ValueArray = classDefTable + 6; - - if (glyph >= startGlyphID && glyph < startGlyphID + glyphCount) - return (int32)ttushort(classDef1ValueArray + 2 * (glyph - startGlyphID)); - - classDefTable = classDef1ValueArray + 2 * glyphCount; - } break; - - case 2: { - ushort classRangeCount = ttushort(classDefTable + 2); - uchar *classRangeRecords = classDefTable + 4; - - // Binary search. - int32 l=0, r=classRangeCount-1, m; - int strawStart, strawEnd, needle=glyph; - while (l <= r) { - uchar *classRangeRecord; - m = (l + r) >> 1; - classRangeRecord = classRangeRecords + 6 * m; - strawStart = ttushort(classRangeRecord); - strawEnd = ttushort(classRangeRecord + 2); - if (needle < strawStart) - r = m - 1; - else if (needle > strawEnd) - l = m + 1; - else - return (int32)ttushort(classRangeRecord + 4); - } - - classDefTable = classRangeRecords + 6 * classRangeCount; - } break; - - default: { - // There are no other cases. - assert(0); - } break; - } - - return -1; -} - -static -int32 -glyph_gposadvance(font·Info *info, int glyph1, int glyph2) -{ - ushort lookupListOffset; - uchar *lookupList; - ushort lookupCount; - uchar *data; - int32 i; - - if (!info->gpos) return 0; - - data = info->data + info->gpos; - - if (ttushort(data+0) != 1) return 0; // Major version 1 - if (ttushort(data+2) != 0) return 0; // Minor version 0 - - lookupListOffset = ttushort(data+8); - lookupList = data + lookupListOffset; - lookupCount = ttushort(lookupList); - - for (i=0; i> 1; - pairValue = pairValueArray + (2 + valueRecordPairSizeInBytes) * m; - secondGlyph = ttushort(pairValue); - straw = secondGlyph; - if (needle < straw) - r = m - 1; - else if (needle > straw) - l = m + 1; - else { - short xAdvance = ttshort(pairValue + 2); - return xAdvance; - } - } - } break; - - case 2: { - ushort valueFormat1 = ttushort(table + 4); - ushort valueFormat2 = ttushort(table + 6); - - ushort classDef1Offset = ttushort(table + 8); - ushort classDef2Offset = ttushort(table + 10); - int glyph1class = glyph_class(table + classDef1Offset, glyph1); - int glyph2class = glyph_class(table + classDef2Offset, glyph2); - - ushort class1Count = ttushort(table + 12); - ushort class2Count = ttushort(table + 14); - assert(glyph1class < class1Count); - assert(glyph2class < class2Count); - - // TODO: Support more formats. - if (valueFormat1 != 4) return 0; - if (valueFormat2 != 0) return 0; - - if (glyph1class >= 0 && glyph1class < class1Count && glyph2class >= 0 && glyph2class < class2Count) { - uchar *class1Records = table + 16; - uchar *class2Records = class1Records + 2 * (glyph1class * class2Count); - short xAdvance = ttshort(class2Records + 2 * glyph2class); - return xAdvance; - } - } break; - - default: { - // There are no other cases. - assert(0); - break; - }; - } - } - break; - }; - - default: - // TODO: Implement other stuff. - break; - } - } - - return 0; -} - -int -font·glyph_kernadvance(font·Info *info, int g1, int g2) -{ - int xAdvance = 0; - - if (info->gpos) - xAdvance += glyph_gposadvance(info, g1, g2); - else if (info->kern) - xAdvance += glyph_kernadvance(info, g1, g2); - - return xAdvance; -} - -int -font·code_kernadvance(font·Info *info, int ch1, int ch2) -{ - // if no kerning table, don't waste time looking up both codepoint->glyphs - if (!info->kern && !info->gpos) - return 0; - - return font·glyph_kernadvance(info, font·glyph_index(info,ch1), font·glyph_index(info,ch2)); -} - -void -font·code_hmetrics(font·Info *info, int codepoint, int *advanceWidth, int *lsb) -{ - font·glyph_hmetrics(info, font·glyph_index(info, codepoint), advanceWidth, lsb); -} - -void -font·vmetrics(font·Info *info, int *ascent, int *descent, int *linegap) -{ - if (ascent) *ascent = ttshort(info->data+info->hhea + 4); - if (descent) *descent = ttshort(info->data+info->hhea + 6); - if (linegap) *linegap = ttshort(info->data+info->hhea + 8); -} - -void -font·bbox(font·Info *info, int *x0, int *y0, int *x1, int *y1) -{ - *x0 = ttshort(info->data + info->head + 36); - *y0 = ttshort(info->data + info->head + 38); - *x1 = ttshort(info->data + info->head + 40); - *y1 = ttshort(info->data + info->head + 42); -} - -float -font·scaleheightto(font·Info *info, float height) -{ - int fheight = ttshort(info->data + info->hhea + 4) - ttshort(info->data + info->hhea + 6); - return (float) height / fheight; -} - -float -font·scaleheighttoem(font·Info *info, float pixels) -{ - int unitsPerEm = ttushort(info->data + info->head + 18); - return pixels / unitsPerEm; -} - -void -font·freeshape(font·Info *info, font·Vertex *v) -{ - info->free(info->heap, v); -} - -static -uchar * -find_svg(font·Info *info, int gl) -{ - int i; - uchar *data = info->data; - uchar *svg_doc_list = data + get_svg((font·Info *) info); - - int numEntries = ttushort(svg_doc_list); - uchar *svg_docs = svg_doc_list + 2; - - for(i=0; i= ttushort(svg_doc)) && (gl <= ttushort(svg_doc + 2))) - return svg_doc; - } - return 0; -} - -int -font·glyph_svg(font·Info *info, int gl, char **svg) -{ - uchar *data = info->data; - uchar *svg_doc; - - if (info->svg == 0) - return 0; - - svg_doc = find_svg(info, gl); - if (svg_doc != nil) { - *svg = (char *) data + info->svg + ttulong(svg_doc + 4); - return ttulong(svg_doc + 8); - } else { - return 0; - } -} - -int -font·code_svg(font·Info *info, int unicode_codepoint, char **svg) -{ - return font·glyph_svg(info, font·glyph_index(info, unicode_codepoint), svg); -} - -// ----------------------------------------------------------------------- -// antialiasing software rasterizer - -void -font·glyph_bbox_subpixel(font·Info *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) -{ - int x0=0,y0=0,x1,y1; - if (!font·glyph_box(font, glyph, &x0,&y0,&x1,&y1)) { - // e.g. space character - if (ix0) *ix0 = 0; - if (iy0) *iy0 = 0; - if (ix1) *ix1 = 0; - if (iy1) *iy1 = 0; - } else { - // move to integral bboxes (treating pixels as little squares, what pixels get touched)? - if (ix0) *ix0 = (int)floor( x0 * scale_x + shift_x); - if (iy0) *iy0 = (int)floor(-y1 * scale_y + shift_y); - if (ix1) *ix1 = (int)ceil( x1 * scale_x + shift_x); - if (iy1) *iy1 = (int)ceil(-y0 * scale_y + shift_y); - } -} - -void -font·glyph_bbox(font·Info *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) -{ - font·glyph_bbox_subpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1); -} - -void -font·code_bbox_subpixel(font·Info *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) -{ - font·glyph_bbox_subpixel(font, font·glyph_index(font,codepoint), scale_x, scale_y, shift_x, shift_y, ix0, iy0, ix1, iy1); -} - -void -font·code_bbox(font·Info *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) -{ - font·code_bbox_subpixel(font, codepoint, scale_x, scale_y, 0.0f, 0.0f, ix0, iy0, ix1, iy1); -} - -// ------------------------------------------------------------------------ -// Rasterizer - -typedef struct hheap_chunk -{ - struct hheap_chunk *next; -} hheap_chunk; - -typedef struct hheap -{ - struct hheap_chunk *head; - void *first_free; - int nrem; -} hheap; - -static -void * -hheap_alloc(hheap *hh, uintptr size, mem·Allocator mem, void *heap) -{ - int n; - void *p; - if (hh->first_free) { - p = hh->first_free; - hh->first_free = * (void **) p; - return p; - } else { - if (hh->nrem == 0) { - n = (size < 32 ? 2000 : size < 128 ? 800 : 100); - hheap_chunk *c = mem.alloc(heap, 1, sizeof(hheap_chunk) + size * n); - if (c == nil) - return nil; - - c->next = hh->head; - hh->head = c; - hh->nrem = n; - } - --hh->nrem; - return (char *)(hh->head) + sizeof(hheap_chunk) + size * hh->nrem; - } -} - -static -void -hheap_free(hheap *hh, void *p) -{ - *(void **) p = hh->first_free; - hh->first_free = p; -} - -static -void -hheap_cleanup(hheap *hh, mem·Allocator mem, void *heap) -{ - hheap_chunk *c = hh->head; - while (c) { - hheap_chunk *n = c->next; - mem.free(heap, c); - c = n; - } -} - -static -ActiveEdge * -new_active(hheap *hh, Edge *e, int off_x, float start_point, mem·Allocator mem, void *heap) -{ - ActiveEdge *z = (ActiveEdge *) hheap_alloc(hh, sizeof(*z), mem, heap); - float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); - assert(z != nil); - //assert(e->y0 <= start_point); - if (!z) - return z; - z->fdx = dxdy; - z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f; - z->fx = e->x0 + dxdy * (start_point - e->y0); - z->fx -= off_x; - z->direction = e->invert ? 1.0f : -1.0f; - z->sy = e->y0; - z->ey = e->y1; - z->next = 0; - return z; -} - -// assumes: the edge passed in here does not cross the vertical line at x or the vertical line at x+1 -// (i.e. it has already been clipped to those) -static -void -handle_clipped_edge(float *scanline, int x, ActiveEdge *e, float x0, float y0, float x1, float y1) -{ - if (y0 == y1) - return; - - assert(y0 < y1); - assert(e->sy <= e->ey); - - if (y0 > e->ey) - return; - if (y1 < e->sy) - return; - - if (y0 < e->sy) { - x0 += (x1-x0) * (e->sy - y0) / (y1-y0); - y0 = e->sy; - } - - if (y1 > e->ey) { - x1 += (x1-x0) * (e->ey - y1) / (y1-y0); - y1 = e->ey; - } - - if (x0 == x) - assert(x1 <= x+1); - else if (x0 == x+1) - assert(x1 >= x); - else if (x0 <= x) - assert(x1 <= x); - else if (x0 >= x+1) - assert(x1 >= x+1); - else - assert(x1 >= x && x1 <= x+1); - - if (x0 <= x && x1 <= x) - scanline[x] += e->direction * (y1-y0); - else if (x0 >= x+1 && x1 >= x+1) - ; - else { - assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1); - scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); // coverage = 1 - average x position - } -} - -static -void -fill_active_edges_new(float *scanline, float *scanline_fill, int len, ActiveEdge *e, float y_top) -{ - float y_bot = y_top+1; - - while (e) { - // brute force every pixel - // compute intersection points with top & bottom - assert(e->ey >= y_top); - - if (e->fdx == 0) { - float x0 = e->fx; - if (x0 < len) { - if (x0 >= 0) { - handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bot); - handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bot); - } else { - handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bot); - } - } - } else { - float x0 = e->fx; - float dx = e->fdx; - float xb = x0 + dx; - float x_top, x_bot; - float sy0,sy1; - float dy = e->fdy; - assert(e->sy <= y_bot && e->ey >= y_top); - - // compute endpoints of line segment clipped to this scanline (if the - // line segment starts on this scanline. x0 is the intersection of the - // line with y_top, but that may be off the line segment. - if (e->sy > y_top) { - x_top = x0 + dx * (e->sy - y_top); - sy0 = e->sy; - } else { - x_top = x0; - sy0 = y_top; - } - if (e->ey < y_bot) { - x_bot = x0 + dx * (e->ey - y_top); - sy1 = e->ey; - } else { - x_bot = xb; - sy1 = y_bot; - } - - if (x_top >= 0 && x_bot >= 0 && x_top < len && x_bot < len) { - // from here on, we don't have to range check x values - - if ((int)x_top == (int)x_bot) { - float height; - // simple case, only spans one pixel - int x = (int) x_top; - height = sy1 - sy0; - assert(x >= 0 && x < len); - scanline[x] += e->direction * (1-((x_top - x) + (x_bot-x))/2) * height; - scanline_fill[x] += e->direction * height; // everything right of this pixel is filled - } else { - int x,x1,x2; - float y_crossing, step, sign, area; - // covers 2+ pixels - if (x_top > x_bot) { - // flip scanline vertically; signed area is the same - float t; - sy0 = y_bot - (sy0 - y_top); - sy1 = y_bot - (sy1 - y_top); - t = sy0, sy0 = sy1, sy1 = t; - t = x_bot, x_bot = x_top, x_top = t; - dx = -dx; - dy = -dy; - t = x0, x0 = xb, xb = t; - } - - x1 = (int)x_top; - x2 = (int)x_bot; - // compute intersection with y axis at x1+1 - y_crossing = (x1+1 - x0) * dy + y_top; - - sign = e->direction; - // area of the rectangle covered from y0..y_crossing - area = sign * (y_crossing-sy0); - // area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing) - scanline[x1] += area * (1-((x_top - x1)+(x1+1-x1))/2); - - step = sign * dy; - for (x = x1+1; x < x2; ++x) { - scanline[x] += area + step/2; - area += step; - } - y_crossing += dy * (x2 - (x1+1)); - - assert(fabs(area) <= 1.01f); - - scanline[x2] += area + sign * (1-((x2-x2)+(x_bot-x2))/2) * (sy1-y_crossing); - scanline_fill[x2] += sign * (sy1-sy0); - } - } else { - // if edge goes outside of box we're drawing, we require - // clipping logic. since this does not match the intended use - // of this library, we use a different, very slow brute - // force implementation - int x; - for (x=0; x < len; ++x) { - // cases: - // - // there can be up to two intersections with the pixel. any intersection - // with left or right edges can be handled by splitting into two (or three) - // regions. intersections with top & bottom do not necessitate case-wise logic. - // - // the old way of doing this found the intersections with the left & right edges, - // then used some simple logic to produce up to three segments in sorted order - // from top-to-bottom. however, this had a problem: if an x edge was epsilon - // across the x border, then the corresponding y position might not be distinct - // from the other y segment, and it might ignored as an empty segment. to avoid - // that, we need to explicitly produce segments based on x positions. - - // rename variables to clearly-defined pairs - float y0 = y_top; - float x1 = (float)(x); - float x2 = (float)(x+1); - float x3 = xb; - float y3 = y_bot; - - float y1 = (x+0 - x0) / dx + y_top; - float y2 = (x+1 - x0) / dx + y_top; - - if (x0 < x1 && x3 > x2) { // three segments descending down-right - handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); - handle_clipped_edge(scanline,x,e, x1,y1, x2,y2); - handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); - } else if (x3 < x1 && x0 > x2) { // three segments descending down-left - handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); - handle_clipped_edge(scanline,x,e, x2,y2, x1,y1); - handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); - } else if (x0 < x1 && x3 > x1) { // two segments across x, down-right - handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); - handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); - } else if (x3 < x1 && x0 > x1) { // two segments across x, down-left - handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); - handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); - } else if (x0 < x2 && x3 > x2) { // two segments across x+1, down-right - handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); - handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); - } else if (x3 < x2 && x0 > x2) { // two segments across x+1, down-left - handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); - handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); - } else { // one segment - handle_clipped_edge(scanline,x,e, x0,y0, x3,y3); - } - } - } - } - e = e->next; - } -} - -// directly AA rasterize edges w/o supersampling -static -void -rasterize_sorted_edges(font·Bitmap *result, Edge *e, int n, int vsubsample, int off_x, int off_y, mem·Allocator mem, void *heap) -{ - hheap hh = { 0 }; - ActiveEdge *active = nil; - int y,j=0, i; - float scanline_data[129], *scanline, *scanline2; - - if (result->w > 64) - scanline = mem.alloc(heap, (result->w*2+1), sizeof(float)); - else - scanline = scanline_data; - - scanline2 = scanline + result->w; - - y = off_y; - e[n].y0 = (float)(off_y + result->h) + 1; - - while (j < result->h) { - // find center of pixel for this scanline - float scan_y_top = y - 0.0f; - float scan_y_bot = y + 1.0f; - ActiveEdge **step = &active; - - memset(scanline , 0, (result->w+0)*sizeof(scanline[0])); - memset(scanline2, 0, (result->w+1)*sizeof(scanline[0])); - - // update all active edges; - // remove all active edges that terminate before the top of this scanline - while (*step) { - ActiveEdge * z = *step; - if (z->ey <= scan_y_top) { - *step = z->next; // delete from list - assert(z->direction); - z->direction = 0; - hheap_free(&hh, z); - } else - step = &((*step)->next); // advance through list - } - - // insert all edges that start before the bottom of this scanline - while (e->y0 <= scan_y_bot) { - if (e->y0 != e->y1) { - ActiveEdge *z = new_active(&hh, e, off_x, scan_y_top, mem, heap); - if (z != nil) { - if (j == 0 && off_y != 0) { - if (z->ey < scan_y_top) { - // this can happen due to subpixel positioning and some kind of fp rounding error i think - z->ey = scan_y_top; - } - } - assert(z->ey >= scan_y_top); // if we get really unlucky a tiny bit of an edge can be out of bounds - // insert at front - z->next = active; - active = z; - } - } - ++e; - } - - // now process all active edges - if (active) - fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top); - - { - float sum = 0; - for (i=0; i < result->w; ++i) { - float k; - int m; - sum += scanline2[i]; - k = scanline[i] + sum; - k = (float)fabs(k)*255 + 0.5f; - m = (int)k; - if (m > 255) - m = 255; - result->pixels[j*result->stride + i] = (uchar)m; - } - } - // advance all the edges - step = &active; - while (*step) { - ActiveEdge *z = *step; - z->fx += z->fdx; // advance to position for current scanline - step = &((*step)->next); // advance through list - } - - ++y; - ++j; - } - - hheap_cleanup(&hh, mem, heap); - - if (scanline != scanline_data) - mem.free(heap, scanline); -} - -#define CMP_Y0(a,b) ((a)->y0 < (b)->y0) - -static -void -sort_edges_ins_sort(Edge *p, int n) -{ - int i,j; - for (i=1; i < n; ++i) { - Edge t = p[i], *a = &t; - j = i; - while (j > 0) { - Edge *b = &p[j-1]; - int c = CMP_Y0(a,b); - if (!c) - break; - - p[j] = p[j-1]; - --j; - } - if (i != j) - p[j] = t; - } -} - -static -void -sort_edges_quicksort(Edge *p, int n) -{ - /* threshold for transitioning to insertion sort */ - while (n > 12) { - Edge t; - int c01,c12,c,m,i,j; - - /* compute median of three */ - m = n >> 1; - c01 = CMP_Y0(&p[0],&p[m]); - c12 = CMP_Y0(&p[m],&p[n-1]); - /* if 0 >= mid >= end, or 0 < mid < end, then use mid */ - if (c01 != c12) { - /* otherwise, we'll need to swap something else to middle */ - int z; - c = CMP_Y0(&p[0],&p[n-1]); - /* 0>mid && midn => n; 0 0 */ - /* 0n: 0>n => 0; 0 n */ - z = (c == c12) ? 0 : n-1; - t = p[z]; - p[z] = p[m]; - p[m] = t; - } - /* now p[m] is the median-of-three */ - /* swap it to the beginning so it won't move around */ - t = p[0]; - p[0] = p[m]; - p[m] = t; - - /* partition loop */ - i=1; - j=n-1; - for(;;) { - /* handling of equality is crucial here */ - /* for sentinels & efficiency with duplicates */ - for (;;++i) { - if (!CMP_Y0(&p[i], &p[0])) - break; - } - for (;;--j) { - if (!CMP_Y0(&p[0], &p[j])) - break; - } - /* make sure we haven't crossed */ - if (i >= j) - break; - t = p[i]; - p[i] = p[j]; - p[j] = t; - - ++i; - --j; - } - /* recurse on smaller side, iterate on larger */ - if (j < (n-i)) { - sort_edges_quicksort(p,j); - p = p+i; - n = n-i; - } else { - sort_edges_quicksort(p+i, n-i); - n = j; - } - } -} - -static -void -sort_edges(Edge *p, int n) -{ - sort_edges_quicksort(p, n); - sort_edges_ins_sort(p, n); -} - -static -void -rasterize_points(font·Bitmap *result, Point *pts, int *wcount, int nwinding, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert, mem·Allocator mem, void *heap) -{ - float y_scale_inv = invert ? -scale_y : scale_y; - Edge *e; - int n,i,j,k,m; - int vsubsample = 1; - // vsubsample should divide 255 evenly; otherwise we won't reach full opacity - - // now we have to blow out the nwinding into explicit edge lists - n = 0; - for (i = 0; i < nwinding; ++i) - n += wcount[i]; - - e = mem.alloc(heap, n+1, sizeof(*e)); // add an extra one as a sentinel - if (e == 0) - return; - n = 0; - - m = 0; - for (i = 0; i < nwinding; ++i) { - Point *p = pts + m; - m += wcount[i]; - j = wcount[i]-1; - for (k=0; k < wcount[i]; j=k++) { - int a = k, b = j; - // skip the Edge if horizontal - if (p[j].y == p[k].y) - continue; - // add edge from j to k to the list - e[n].invert = 0; - if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) { - e[n].invert = 1; - a=j,b=k; - } - e[n].x0 = p[a].x * scale_x + shift_x; - e[n].y0 = (p[a].y * y_scale_inv + shift_y) * vsubsample; - e[n].x1 = p[b].x * scale_x + shift_x; - e[n].y1 = (p[b].y * y_scale_inv + shift_y) * vsubsample; - ++n; - } - } - - // now sort the edges by their highest point (should snap to integer, and then by x) - sort_edges(e, n); - - // now, traverse the scanlines and find the intersections on each scanline, use xor winding rule - rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, mem, heap); - - mem.free(heap, e); -} - -static -void -add_point(Point *points, int n, float x, float y) -{ - if (!points) - return; // during first pass, it's unallocated - - points[n].x = x; - points[n].y = y; -} - -// tessellate until threshold p is happy... @TODO warped to compensate for non-linear stretching -static -int -tesselate_curve(Point *points, int *npts, float x0, float y0, float x1, float y1, float x2, float y2, float objspace_flatness_squared, int n) -{ - // midpoint - float mx = (x0 + 2*x1 + x2)/4; - float my = (y0 + 2*y1 + y2)/4; - // versus directly drawn line - float dx = (x0+x2)/2 - mx; - float dy = (y0+y2)/2 - my; - - if (n > 16) // 65536 segments on one curve better be enough! - return 1; - if (dx*dx+dy*dy > objspace_flatness_squared) { // half-pixel error allowed... need to be smaller if AA - tesselate_curve(points, npts, x0,y0, (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1); - tesselate_curve(points, npts, mx,my, (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1); - } else { - add_point(points, *npts,x2,y2); - *npts = *npts+1; - } - return 1; -} - -static -void -tesselate_cubic(Point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float objspace_flatness_squared, int n) -{ - // @TODO this "flatness" calculation is just made-up nonsense that seems to work well enough - float dx0 = x1-x0; - float dy0 = y1-y0; - float dx1 = x2-x1; - float dy1 = y2-y1; - float dx2 = x3-x2; - float dy2 = y3-y2; - float dx = x3-x0; - float dy = y3-y0; - float longlen = (float)(sqrt(dx0*dx0+dy0*dy0)+sqrt(dx1*dx1+dy1*dy1)+sqrt(dx2*dx2+dy2*dy2)); - float shortlen = (float) sqrt(dx*dx+dy*dy); - float flatness_squared = longlen*longlen-shortlen*shortlen; - - if (n > 16) // 65536 segments on one curve better be enough! - return; - - if (flatness_squared > objspace_flatness_squared) { - float x01 = (x0+x1)/2; - float y01 = (y0+y1)/2; - float x12 = (x1+x2)/2; - float y12 = (y1+y2)/2; - float x23 = (x2+x3)/2; - float y23 = (y2+y3)/2; - - float xa = (x01+x12)/2; - float ya = (y01+y12)/2; - float xb = (x12+x23)/2; - float yb = (y12+y23)/2; - - float mx = (xa+xb)/2; - float my = (ya+yb)/2; - - tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, objspace_flatness_squared,n+1); - tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, objspace_flatness_squared,n+1); - } else { - add_point(points, *num_points,x3,y3); - *num_points = *num_points+1; - } -} - -// returns number of contours -static -Point * -flatten(font·Vertex *verts, int numv, float objspace_flatness, int **contour_lengths, int *num_contours, mem·Allocator mem, void *heap) -{ - Point *points=0; - int num_points=0; - - float objspace_flatness_squared = objspace_flatness * objspace_flatness; - int i,n=0,start=0, pass; - - // count how many "moves" there are to get the contour count - for (i=0; i < numv; ++i) - if (verts[i].type == font·Vmove) - ++n; - - *num_contours = n; - if (n == 0) - return 0; - - *contour_lengths = mem.alloc(heap, n, sizeof(**contour_lengths)); - - if (*contour_lengths == 0) { - *num_contours = 0; - return 0; - } - - // make two passes through the points so we don't need to realloc - for (pass=0; pass < 2; ++pass) { - float x=0,y=0; - if (pass == 1) { - points = mem.alloc(heap, num_points, sizeof(points[0])); - if (!points) - goto nomemory; - } - num_points = 0; - n = -1; - for (i=0; i < numv; ++i) { - switch (verts[i].type) { - case font·Vmove: - // start the next contour - if (n >= 0) - (*contour_lengths)[n] = num_points - start; - ++n; - start = num_points; - - x = verts[i].x, y = verts[i].y; - add_point(points, num_points++, x, y); - break; - case font·Vline: - x = verts[i].x, y = verts[i].y; - add_point(points, num_points++, x, y); - break; - case font·Vcurve: - tesselate_curve(points, &num_points, x,y, - verts[i].cx, verts[i].cy, - verts[i].x, verts[i].y, - objspace_flatness_squared, 0); - x = verts[i].x, y = verts[i].y; - break; - case font·Vcubic: - tesselate_cubic(points, &num_points, x,y, - verts[i].cx, verts[i].cy, - verts[i].cx1, verts[i].cy1, - verts[i].x, verts[i].y, - objspace_flatness_squared, 0); - x = verts[i].x, y = verts[i].y; - break; - } - } - (*contour_lengths)[n] = num_points - start; - } - return points; - -nomemory: - mem.free(heap, points); - mem.free(heap, *contour_lengths); - *contour_lengths = nil; - *num_contours = 0; - return nil; -} - -static -void -rasterize(font·Bitmap *result, float flatness_in_pixels, font·Vertex *verts, int numv, float scale_x, float scale_y, float shift_x, float shift_y, int x_off, int y_off, int invert, mem·Allocator mal, void *heap) -{ - float scale = MIN(scale_x, scale_y); - int winding_count = 0; - int *winding_lens = nil; - - Point *windings = flatten(verts, numv, flatness_in_pixels / scale, &winding_lens, &winding_count, mal, heap); - if (windings) { - rasterize_points(result, windings, winding_lens, winding_count, scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, mal, heap); - mal.free(heap, windings); - mal.free(heap, winding_lens); - } -} - -void -font·freebitmap(font·Info *info, uchar *bm) -{ - info->free(info->heap, bm); -} - -uchar * -font·glyph_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff) -{ - int ix0,iy0,ix1,iy1; - font·Bitmap gbm; - font·Vertex *verts; - int numv = font·glyph_shape(info, glyph, &verts); - - if (scale_x == 0) scale_x = scale_y; - if (scale_y == 0) { - if (scale_x == 0) { - info->free(info->heap, verts); - return nil; - } - scale_y = scale_x; - } - - font·glyph_bbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,&ix1,&iy1); - - // now we get the size - gbm.w = (ix1 - ix0); - gbm.h = (iy1 - iy0); - gbm.pixels = nil; // in case we error - - if (width ) *width = gbm.w; - if (height) *height = gbm.h; - if (xoff ) *xoff = ix0; - if (yoff ) *yoff = iy0; - - if (gbm.w && gbm.h) { - gbm.pixels = info->alloc(info->heap, 1, gbm.h*gbm.w); - if (gbm.pixels) { - gbm.stride = gbm.w; - - rasterize(&gbm, 0.35f, verts, numv, scale_x, scale_y, shift_x, shift_y, ix0, iy0, 1, info->mal, info->heap); - } - } - info->free(info->heap, verts); - return gbm.pixels; -} - -uchar * -font·glyph_makebitmap(font·Info *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff) -{ - return font·glyph_makebitmap_subpixel(info, scale_x, scale_y, 0.0f, 0.0f, glyph, width, height, xoff, yoff); -} - -void -font·glyph_fillbitmap_subpixel(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph) -{ - int ix0, iy0, nv; - font·Vertex *verts; - font·Bitmap gbm; - - nv = font·glyph_shape(info, glyph, &verts); - - font·glyph_bbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,0,0); - gbm.pixels = output; - gbm.w = out_w; - gbm.h = out_h; - gbm.stride = out_stride; - - if (gbm.w && gbm.h) - rasterize(&gbm, 0.35f, verts, nv, scale_x, scale_y, shift_x, shift_y, ix0,iy0, 1, info->mal, info->heap); - - info->free(info->heap, verts); -} - -void -font·glyph_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph) -{ - font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f, 0.0f, glyph); -} - -uchar * -font·code_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff) -{ - return font·glyph_makebitmap_subpixel(info, scale_x, scale_y,shift_x,shift_y, font·glyph_index(info,codepoint), width,height,xoff,yoff); -} - -void -font·code_fillbitmap_subpixel_prefilter(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint) -{ - font·glyph_fillbitmap_subpixel_prefilter(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, oversample_x, oversample_y, sub_x, sub_y, font·glyph_index(info,codepoint)); -} - -void -font·code_fillbitmap_subpixel(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint) -{ - font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, font·glyph_index(info, codepoint)); -} - -uchar * -font·code_makebitmap(font·Info *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff) -{ - return font·code_makebitmap_subpixel(info, scale_x, scale_y, 0.0f,0.0f, codepoint, width,height,xoff,yoff); -} - -void -font·code_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint) -{ - font·code_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, codepoint); -} - -#define OVERMASK (SAMPLE-1) - -static -void -h_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, uint kern) -{ - uchar buffer[SAMPLE]; - int safe_w = w - kern; - int j; - memset(buffer, 0, SAMPLE); - for (j=0; j < h; ++j) { - int i; - uint total; - memset(buffer, 0, kern); - - total = 0; - - // make kern a constant in common cases so compiler can optimize out the divide - switch (kern) { - case 2: - for (i=0; i <= safe_w; ++i) { - total += pixels[i] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i]; - pixels[i] = (uchar) (total / 2); - } - break; - case 3: - for (i=0; i <= safe_w; ++i) { - total += pixels[i] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i]; - pixels[i] = (uchar) (total / 3); - } - break; - case 4: - for (i=0; i <= safe_w; ++i) { - total += pixels[i] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i]; - pixels[i] = (uchar) (total / 4); - } - break; - case 5: - for (i=0; i <= safe_w; ++i) { - total += pixels[i] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i]; - pixels[i] = (uchar) (total / 5); - } - break; - default: - for (i=0; i <= safe_w; ++i) { - total += pixels[i] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i]; - pixels[i] = (uchar) (total / kern); - } - break; - } - - for (; i < w; ++i) { - assert(pixels[i] == 0); - total -= buffer[i & OVERMASK]; - pixels[i] = (uchar) (total / kern); - } - - pixels += stride_in_bytes; - } -} - -static -void -v_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, uint kern) -{ - uchar buffer[SAMPLE]; - int safe_h = h - kern; - int j; - memset(buffer, 0, SAMPLE); - - for (j=0; j < w; ++j) { - int i; - uint total; - memset(buffer, 0, kern); - - total = 0; - - // make kern a constant in common cases so compiler can optimize out the divide - switch (kern) { - case 2: - for (i=0; i <= safe_h; ++i) { - total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i*stride_in_bytes]; - pixels[i*stride_in_bytes] = (uchar) (total / 2); - } - break; - case 3: - for (i=0; i <= safe_h; ++i) { - total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i*stride_in_bytes]; - pixels[i*stride_in_bytes] = (uchar) (total / 3); - } - break; - case 4: - for (i=0; i <= safe_h; ++i) { - total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i*stride_in_bytes]; - pixels[i*stride_in_bytes] = (uchar) (total / 4); - } - break; - case 5: - for (i=0; i <= safe_h; ++i) { - total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i*stride_in_bytes]; - pixels[i*stride_in_bytes] = (uchar) (total / 5); - } - break; - default: - for (i=0; i <= safe_h; ++i) { - total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; - buffer[(i+kern) & OVERMASK] = pixels[i*stride_in_bytes]; - pixels[i*stride_in_bytes] = (uchar) (total / kern); - } - break; - } - - for (; i < h; ++i) { - assert(pixels[i*stride_in_bytes] == 0); - total -= buffer[i & OVERMASK]; - pixels[i*stride_in_bytes] = (uchar)(total / kern); - } - - pixels += 1; - } -} - -static -float -oversample_shift(int width) -{ - if (!width) - return 0.0f; - - // The prefilter is a box filter of width "oversample", - // which shifts phase by (oversample - 1)/2 pixels in - // oversampled space. We want to shift in the opposite - // direction to counter this. - return -((float)width - 1.0f) / (2.0f * (float)width); -} - -// rects array must be big enough to accommodate all characters in the given ranges -void -font·glyph_fillbitmap_subpixel_prefilter(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int prefilter_x, int prefilter_y, float *sub_x, float *sub_y, int glyph) -{ - font·glyph_fillbitmap_subpixel(info, - output, - out_w - (prefilter_x - 1), - out_h - (prefilter_y - 1), - out_stride, - scale_x, - scale_y, - shift_x, - shift_y, - glyph); - - if (prefilter_x > 1) - h_prefilter(output, out_w, out_h, out_stride, prefilter_x); - - if (prefilter_y > 1) - v_prefilter(output, out_w, out_h, out_stride, prefilter_y); - - *sub_x = oversample_shift(prefilter_x); - *sub_y = oversample_shift(prefilter_y); -} - -void -font·scaledvmetrics(uchar *fontdata, int index, float size, float *ascent, float *descent, float *linegap) -{ - int i_ascent, i_descent, i_linegap; - float scale; - font·Info info; - init(&info, fontdata, font·offsetfor(fontdata, index)); - scale = size > 0 ? font·scaleheightto(&info, size) : font·scaleheighttoem(&info, -size); - font·vmetrics(&info, &i_ascent, &i_descent, &i_linegap); - *ascent = (float) i_ascent * scale; - *descent = (float) i_descent * scale; - *linegap = (float) i_linegap * scale; -} - -// ----------------------------------------------------------------------- -// sdf computation - -static -int -ray_intersect_bezier(float orig[2], float ray[2], float q0[2], float q1[2], float q2[2], float hits[2][2]) -{ - float q0perp = q0[1]*ray[0] - q0[0]*ray[1]; - float q1perp = q1[1]*ray[0] - q1[0]*ray[1]; - float q2perp = q2[1]*ray[0] - q2[0]*ray[1]; - float roperp = orig[1]*ray[0] - orig[0]*ray[1]; - - float a = q0perp - 2*q1perp + q2perp; - float b = q1perp - q0perp; - float c = q0perp - roperp; - - float s0 = 0., s1 = 0.; - int num_s = 0; - - if (a != 0.0) { - float discr = b*b - a*c; - if (discr > 0.0) { - float rcpna = -1 / a; - float d = (float) sqrt(discr); - s0 = (b+d) * rcpna; - s1 = (b-d) * rcpna; - if (s0 >= 0.0 && s0 <= 1.0) - num_s = 1; - if (d > 0.0 && s1 >= 0.0 && s1 <= 1.0) { - if (num_s == 0) s0 = s1; - ++num_s; - } - } - } else { - // 2*b*s + c = 0 - // s = -c / (2*b) - s0 = c / (-2 * b); - if (s0 >= 0.0 && s0 <= 1.0) - num_s = 1; - } - - if (num_s == 0) - return 0; - else { - float rcp_len2 = 1 / (ray[0]*ray[0] + ray[1]*ray[1]); - float rayn_x = ray[0] * rcp_len2, rayn_y = ray[1] * rcp_len2; - - float q0d = q0[0]*rayn_x + q0[1]*rayn_y; - float q1d = q1[0]*rayn_x + q1[1]*rayn_y; - float q2d = q2[0]*rayn_x + q2[1]*rayn_y; - float rod = orig[0]*rayn_x + orig[1]*rayn_y; - - float q10d = q1d - q0d; - float q20d = q2d - q0d; - float q0rd = q0d - rod; - - hits[0][0] = q0rd + s0*(2.0f - 2.0f*s0)*q10d + s0*s0*q20d; - hits[0][1] = a*s0+b; - - if (num_s > 1) { - hits[1][0] = q0rd + s1*(2.0f - 2.0f*s1)*q10d + s1*s1*q20d; - hits[1][1] = a*s1+b; - return 2; - } else { - return 1; - } - } -} - -static -int -equal(float *a, float *b) -{ - return (a[0] == b[0] && a[1] == b[1]); -} - -static -int -compute_crossings_x(float x, float y, int nverts, font·Vertex *verts) -{ - int i; - float orig[2], ray[2] = { 1, 0 }; - float y_frac; - int winding = 0; - - orig[0] = x; - orig[1] = y; - - // make sure y never passes through a vertex of the shape - y_frac = (float) fmod(y, 1.0f); - if (y_frac < 0.01f) - y += 0.01f; - else if (y_frac > 0.99f) - y -= 0.01f; - orig[1] = y; - - // test a ray from (-infinity,y) to (x,y) - for (i=0; i < nverts; ++i) { - if (verts[i].type == font·Vline) { - int x0 = (int) verts[i-1].x, y0 = (int) verts[i-1].y; - int x1 = (int) verts[i ].x, y1 = (int) verts[i ].y; - if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) { - float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; - if (x_inter < x) - winding += (y0 < y1) ? 1 : -1; - } - } - if (verts[i].type == font·Vcurve) { - int x0 = (int) verts[i-1].x , y0 = (int) verts[i-1].y ; - int x1 = (int) verts[i ].cx, y1 = (int) verts[i ].cy; - int x2 = (int) verts[i ].x , y2 = (int) verts[i ].y ; - int ax = MIN(x0,MIN(x1,x2)), ay = MIN(y0,MIN(y1,y2)); - int by = MAX(y0,MAX(y1,y2)); - if (y > ay && y < by && x > ax) { - float q0[2],q1[2],q2[2]; - float hits[2][2]; - q0[0] = (float)x0; - q0[1] = (float)y0; - q1[0] = (float)x1; - q1[1] = (float)y1; - q2[0] = (float)x2; - q2[1] = (float)y2; - if (equal(q0,q1) || equal(q1,q2)) { - x0 = (int)verts[i-1].x; - y0 = (int)verts[i-1].y; - x1 = (int)verts[i ].x; - y1 = (int)verts[i ].y; - if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) { - float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; - if (x_inter < x) - winding += (y0 < y1) ? 1 : -1; - } - } else { - int num_hits = ray_intersect_bezier(orig, ray, q0, q1, q2, hits); - if (num_hits >= 1) - if (hits[0][0] < 0) - winding += (hits[0][1] < 0 ? -1 : 1); - if (num_hits >= 2) - if (hits[1][0] < 0) - winding += (hits[1][1] < 0 ? -1 : 1); - } - } - } - } - return winding; -} - -static -float -cuberoot(float x) -{ - if (x<0) - return -(float) pow(-x,1.0f/3.0f); - else - return (float) pow( x,1.0f/3.0f); -} - -// x^3 + c*x^2 + b*x + a = 0 -static -int -solve_cubic(float a, float b, float c, float *r) -{ - float s = -a / 3; - float p = b - a*a / 3; - float q = a * (2*a*a - 9*b) / 27 + c; - float p3 = p*p*p; - float d = q*q + 4*p3 / 27; - if (d >= 0) { - float z = (float) sqrt(d); - float u = (-q + z) / 2; - float v = (-q - z) / 2; - u = cuberoot(u); - v = cuberoot(v); - r[0] = s + u + v; - return 1; - } else { - float u = (float) sqrt(-p/3); - float v = (float) acos(-sqrt(-27/p3) * q / 2) / 3; // p3 must be negative, since d is negative - float m = (float) cos(v); - float n = (float) cos(v-3.141592/2)*1.732050808f; - r[0] = s + u * 2 * m; - r[1] = s - u * (m + n); - r[2] = s - u * (m - n); - - return 3; - } -} - -uchar * -font·glyph_sdf(font·Info *info, float scale, int glyph, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) -{ - float scale_x = scale, scale_y = scale; - int ix0,iy0,ix1,iy1; - int w,h; - uchar *data; - - if (scale == 0) return nil; - - font·glyph_bbox_subpixel(info, glyph, scale, scale, 0.0f,0.0f, &ix0,&iy0,&ix1,&iy1); - - // if empty, return nil - if (ix0 == ix1 || iy0 == iy1) - return nil; - - ix0 -= padding; - iy0 -= padding; - ix1 += padding; - iy1 += padding; - - w = (ix1 - ix0); - h = (iy1 - iy0); - - if (width ) *width = w; - if (height) *height = h; - if (xoff ) *xoff = ix0; - if (yoff ) *yoff = iy0; - - // invert for y-downwards bitmaps - scale_y = -scale_y; - - { - int x,y,i,j; - float *precompute; - font·Vertex *verts; - int numv = font·glyph_shape(info, glyph, &verts); - data = info->alloc(info->heap, 1, w * h); - precompute = info->alloc(info->heap, numv, sizeof(float)); - - for (i=0,j=numv-1; i < numv; j=i++) { - if (verts[i].type == font·Vline) { - float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; - float x1 = verts[j].x*scale_x, y1 = verts[j].y*scale_y; - float dist = (float) sqrt((x1-x0)*(x1-x0) + (y1-y0)*(y1-y0)); - precompute[i] = (dist == 0) ? 0.0f : 1.0f / dist; - } else if (verts[i].type == font·Vcurve) { - float x2 = verts[j].x *scale_x, y2 = verts[j].y *scale_y; - float x1 = verts[i].cx*scale_x, y1 = verts[i].cy*scale_y; - float x0 = verts[i].x *scale_x, y0 = verts[i].y *scale_y; - float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; - float len2 = bx*bx + by*by; - if (len2 != 0.0f) - precompute[i] = 1.0f / (bx*bx + by*by); - else - precompute[i] = 0.0f; - } else - precompute[i] = 0.0f; - } - - for (y=iy0; y < iy1; ++y) { - for (x=ix0; x < ix1; ++x) { - float val; - float min_dist = 999999.0f; - float sx = (float) x + 0.5f; - float sy = (float) y + 0.5f; - float x_gspace = (sx / scale_x); - float y_gspace = (sy / scale_y); - - int winding = compute_crossings_x(x_gspace, y_gspace, numv, verts); // @OPTIMIZE: this could just be a rasterization, but needs to be line vs. non-tesselated curves so a new path - - for (i=0; i < numv; ++i) { - float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; - - // check against every point here rather than inside line/curve primitives -- @TODO: wrong if multiple 'moves' in a row produce a garbage point, and given culling, probably more efficient to do within line/curve - float dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy); - if (dist2 < min_dist*min_dist) - min_dist = (float)sqrt(dist2); - - if (verts[i].type == font·Vline) { - float x1 = verts[i-1].x*scale_x, y1 = verts[i-1].y*scale_y; - - // coarse culling against bbox - //if (sx > MIN(x0,x1)-min_dist && sx < MAX(x0,x1)+min_dist && - // sy > MIN(y0,y1)-min_dist && sy < MAX(y0,y1)+min_dist) - float dist = (float) fabs((x1-x0)*(y0-sy) - (y1-y0)*(x0-sx)) * precompute[i]; - assert(i != 0); - if (dist < min_dist) { - // check position along line - // x' = x0 + t*(x1-x0), y' = y0 + t*(y1-y0) - // minimize (x'-sx)*(x'-sx)+(y'-sy)*(y'-sy) - float dx = x1-x0, dy = y1-y0; - float px = x0-sx, py = y0-sy; - // minimize (px+t*dx)^2 + (py+t*dy)^2 = px*px + 2*px*dx*t + t^2*dx*dx + py*py + 2*py*dy*t + t^2*dy*dy - // derivative: 2*px*dx + 2*py*dy + (2*dx*dx+2*dy*dy)*t, set to 0 and solve - float t = -(px*dx + py*dy) / (dx*dx + dy*dy); - if (t >= 0.0f && t <= 1.0f) - min_dist = dist; - } - } else if (verts[i].type == font·Vcurve) { - float x2 = verts[i-1].x *scale_x, y2 = verts[i-1].y *scale_y; - float x1 = verts[i ].cx*scale_x, y1 = verts[i ].cy*scale_y; - float box_x0 = MIN(MIN(x0,x1),x2); - float box_y0 = MIN(MIN(y0,y1),y2); - float box_x1 = MAX(MAX(x0,x1),x2); - float box_y1 = MAX(MAX(y0,y1),y2); - // coarse culling against bbox to avoid computing cubic unnecessarily - if (sx > box_x0-min_dist && sx < box_x1+min_dist && sy > box_y0-min_dist && sy < box_y1+min_dist) { - int num=0; - float ax = x1-x0, ay = y1-y0; - float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; - float mx = x0 - sx, my = y0 - sy; - float res[3],px,py,t,it; - float a_inv = precompute[i]; - if (a_inv == 0.0) { // if a_inv is 0, it's 2nd degree so use quadratic formula - float a = 3*(ax*bx + ay*by); - float b = 2*(ax*ax + ay*ay) + (mx*bx+my*by); - float c = mx*ax+my*ay; - if (a == 0.0) { // if a is 0, it's linear - if (b != 0.0) { - res[num++] = -c/b; - } - } else { - float discriminant = b*b - 4*a*c; - if (discriminant < 0) - num = 0; - else { - float root = (float) sqrt(discriminant); - res[0] = (-b - root)/(2*a); - res[1] = (-b + root)/(2*a); - num = 2; // don't bother distinguishing 1-solution case, as code below will still work - } - } - } else { - float b = 3*(ax*bx + ay*by) * a_inv; // could precompute this as it doesn't depend on sample point - float c = (2*(ax*ax + ay*ay) + (mx*bx+my*by)) * a_inv; - float d = (mx*ax+my*ay) * a_inv; - num = solve_cubic(b, c, d, res); - } - if (num >= 1 && res[0] >= 0.0f && res[0] <= 1.0f) { - t = res[0], it = 1.0f - t; - px = it*it*x0 + 2*t*it*x1 + t*t*x2; - py = it*it*y0 + 2*t*it*y1 + t*t*y2; - dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); - if (dist2 < min_dist * min_dist) - min_dist = (float) sqrt(dist2); - } - if (num >= 2 && res[1] >= 0.0f && res[1] <= 1.0f) { - t = res[1], it = 1.0f - t; - px = it*it*x0 + 2*t*it*x1 + t*t*x2; - py = it*it*y0 + 2*t*it*y1 + t*t*y2; - dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); - if (dist2 < min_dist * min_dist) - min_dist = (float) sqrt(dist2); - } - if (num >= 3 && res[2] >= 0.0f && res[2] <= 1.0f) { - t = res[2], it = 1.0f - t; - px = it*it*x0 + 2*t*it*x1 + t*t*x2; - py = it*it*y0 + 2*t*it*y1 + t*t*y2; - dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); - if (dist2 < min_dist * min_dist) - min_dist = (float) sqrt(dist2); - } - } - } - } - if (winding == 0) - min_dist = -min_dist; // if outside the shape, value is negative - val = onedge_value + pixel_dist_scale * min_dist; - if (val < 0) - val = 0; - else if (val > 255) - val = 255; - data[(y-iy0)*w+(x-ix0)] = (uchar) val; - } - } - info->free(info->heap,precompute); - info->free(info->heap, verts); - } - return data; -} - -uchar * -font·code_sdf(font·Info *info, float scale, int codepoint, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) -{ - return font·glyph_sdf(info, scale, font·glyph_index(info, codepoint), padding, onedge_value, pixel_dist_scale, width, height, xoff, yoff); -} - -void -font·freesdf(font·Info* info, uchar *bitmap) -{ - info->free(info->heap, bitmap); -} - -char* -font·name(font·Info *font, int *length, int platformID, int encodingID, int languageID, int nameID) -{ - int32 i,count,stringOffset; - uchar *fc = font->data; - uint32 offset = font->fontstart; - uint32 nm = find_table(fc, offset, "name"); - if (!nm) return nil; - - count = ttushort(fc+nm+2); - stringOffset = nm + ttushort(fc+nm+4); - for (i=0; i < count; ++i) { - uint32 loc = nm + 6 + 12 * i; - if (platformID == ttushort(fc+loc+0) && encodingID == ttushort(fc+loc+2) - && languageID == ttushort(fc+loc+4) && nameID == ttushort(fc+loc+6)) { - *length = ttushort(fc+loc+8); - return (char *) (fc+stringOffset+ttushort(fc+loc+10)); - } - } - return nil; -} - -#if 0 -static -int -matchpair(uchar *fc, uint32 nm, uchar *name, int32 nlen, int32 target_id, int32 next_id) -{ - int32 i; - int32 count = ttushort(fc+nm+2); - int32 stringOffset = nm + ttushort(fc+nm+4); - - for (i=0; i < count; ++i) { - uint32 loc = nm + 6 + 12 * i; - int32 id = ttushort(fc+loc+6); - if (id == target_id) { - // find the encoding - int32 platform = ttushort(fc+loc+0), encoding = ttushort(fc+loc+2), language = ttushort(fc+loc+4); - - // is this a Unicode encoding? - if (platform == 0 || (platform == 3 && encoding == 1) || (platform == 3 && encoding == 10)) { - int32 slen = ttushort(fc+loc+8); - int32 off = ttushort(fc+loc+10); - - // check if there's a prefix match - int32 matchlen = CompareUTF8toUTF16_bigendian_prefix(name, nlen, fc+stringOffset+off,slen); - if (matchlen >= 0) { - // check for target_id+1 immediately following, with same encoding & language - if (i+1 < count && ttushort(fc+loc+12+6) == next_id && ttushort(fc+loc+12) == platform && ttushort(fc+loc+12+2) == encoding && ttushort(fc+loc+12+4) == language) { - slen = ttushort(fc+loc+12+8); - off = ttushort(fc+loc+12+10); - if (slen == 0) { - if (matchlen == nlen) - return 1; - } else if (matchlen < nlen && name[matchlen] == ' ') { - ++matchlen; - if (font·CompareUTF8toUTF16_bigendian((char*) (name+matchlen), nlen-matchlen, (char*)(fc+stringOffset+off),slen)) - return 1; - } - } else { - // if nothing immediately following - if (matchlen == nlen) - return 1; - } - } - } - - // @TODO handle other encodings - } - } - return 0; -} - -static -int -matches(uchar *fc, uint32 offset, uchar *name, int32 flags) -{ - int32 nlen = (int32) strlen((char *) name); - uint32 nm, hd; - if (!isfont(fc+offset)) - return 0; - - // check italics/bold/underline flags in macStyle... - if (flags) { - hd = find_table(fc, offset, "head"); - if ((ttushort(fc+hd+44) & 7) != (flags & 7)) return 0; - } - - nm = find_table(fc, offset, "name"); - if (!nm) return 0; - - if (flags) { - // if we checked the macStyle flags, then just check the family and ignore the subfamily - if (matchpair(fc, nm, name, nlen, 16, -1)) return 1; - if (matchpair(fc, nm, name, nlen, 1, -1)) return 1; - if (matchpair(fc, nm, name, nlen, 3, -1)) return 1; - } else { - if (matchpair(fc, nm, name, nlen, 16, 17)) return 1; - if (matchpair(fc, nm, name, nlen, 1, 2)) return 1; - if (matchpair(fc, nm, name, nlen, 3, -1)) return 1; - } - - return 0; -} - -int -font·findmatch(uchar *collection, char *name_utf8, int32 flags) -{ - int32 i; - for (i=0;;++i) { - int32 off = font·offsetfor(collection, i); - if (off < 0) return off; - if (matches((uchar *) collection, off, (uchar*) name_utf8, flags)) - return off; - } -} -#endif diff --git a/sys/libfont/rules.mk b/sys/libfont/rules.mk deleted file mode 100644 index 0771148..0000000 --- a/sys/libfont/rules.mk +++ /dev/null @@ -1,19 +0,0 @@ -include share/push.mk -# Iterate through subdirectory tree - -# Local sources -SRCS_$(d) := $(d)/font.c #$(d)/hint.c -LIBS_$(d) := $(d)/libfont.a -TSTS_$(d) := $(d)/test.c - -include share/paths.mk - -# Local rules -$(LIBS_$(d)): $(OBJS_$(d)) - $(ARCHIVE) - -$(UNTS_$(d)): TCLIBS := $(LIBS_$(d)) $(OBJ_DIR)/libn/libn.a -$(UNTS_$(d)): $(TOBJS_$(d)) $(LIBS_$(d)) - $(LINK) - -include share/pop.mk diff --git a/sys/libfont/test.c b/sys/libfont/test.c index 7ce9dc0..5097009 100644 --- a/sys/libfont/test.c +++ b/sys/libfont/test.c @@ -2,16 +2,128 @@ #include #include +#include +#include +#include FT_FREETYPE_H /* ugh */ + #define STB_IMAGE_WRITE_IMPLEMENTATION #include "stb_image_write.h" #define DIV 2 #define W 1920/DIV -#define H 1080 -#define L H/80 +#define H 1080/2 +#define L H/35 + +static char *phrase = "abcdefghijklmnopqrstuvwxyx"; +static byte *fontpath = "/home/nolln/root/data/Inconsolata-Regular.ttf"; + +static FT_Library lib; +static FT_Face face; + +static +void +loadfonts(int size) +{ + FT_New_Face(lib, (const byte*)fontpath, 0, &face); + FT_Set_Char_Size(face, 0, size << 6, 72, 72); +} + +int +main() +{ + int i, x, y, x0, y0, c, r, err; + FT_GlyphSlot slot; + FT_Bitmap bitmap; + FT_UInt index; + uchar *pixel; + font·Info *info; + + pixel = calloc(H,W); + mmap·Reader fontfile; + + err = 0; + fontfile = mmap·open(fontpath); + if (!fontfile.len) { + panicf("fail"); + } + + // info = font·make(fontfile.ubuf, 0, mem·sys, nil); + if (!info) + panicf("failed to load info"); + + if (!FcInit()) + panicf("could not initialize fontconfig"); + if (FT_Init_FreeType(&lib)) + panicf("could not initialize freetype"); + + loadfonts(14); -static char *phrase = "strlen(info)=000"; + x0 = 10, y0 = 100; + slot = face->glyph; + for (i = 0; i < strlen(phrase); i++) { + printf("phrase[i]='%c'\n", phrase[i]); + err = FT_Load_Char(face, (rune)phrase[i], FT_LOAD_RENDER); + if (err) + panicf("failed to load font face"); + + x = x0 + slot->bitmap_left; + y = y0 - slot->bitmap_top; + printf("buffer size: [%d, %d]\n", slot->bitmap.rows, slot->bitmap.width); + for (c = 0; c < slot->bitmap.width; c++) { + for (r = 0; r < slot->bitmap.rows; r++) { + if (x+c < 0 || x+c > W || y+r < 0 || y+r > H) + continue; + pixel[(x+c)+W*(y+r)] += slot->bitmap.buffer[c + slot->bitmap.width*r]; + } + } + x0 += slot->advance.x >> 6; + y0 += slot->advance.y >> 6; + } + + // { + // float x = 0.; + // float dy = 0., dx; + // float scale; + // int ascent, descent, baseln; + // int adv, lsb, off, r0[2] = {0}, r1[2] = {0}, w, h, i, j, k ; + + // uchar *work; + + // font·vmetrics(info, &ascent, &descent, &baseln); + // scale = font·scaleheightto(info, L); + // for (i = 0; i < strlen(phrase); i++) { + // dx = x - (float)floor(x); + // font·code_hmetrics(info, phrase[i], &adv, &lsb); + // font·code_bbox_subpixel(info, phrase[i], scale, scale, dx, 0, r0, r0+1, r1, r1+1); + + // y = ascent + r0[1]; + // dy = y - (float)floor(y); + + // w = r1[0]-r0[0]; + // h = r1[1]-r0[1]; + + // work = calloc(w, h); + // font·code_fillbitmap_subpixel(info, work, w, h, w, scale, scale, dx, 0, phrase[i]); + + // off = (int)floor(x+10) + r0[0] + ((int)y-100) * W; + // for (j = 0; j < h; j++) { + // for (k = 0; k < w; k++) { + // pixel[off + k + W*j] += work[k + w*j]; + // } + // } + // free(work); + + // x += scale * adv; + // if (phrase[i+1]) + // x += scale * font·code_kernadvance(info, phrase[i], phrase[i+1]); + // } + // } + stbi_write_png("out.png", W, H, 1, pixel, W); + + exit(0); +} +#if 0 int main() { @@ -77,3 +189,4 @@ end: mmap·close(fontfile); return err; } +#endif -- cgit v1.2.1