#include #include #include #define SAMPLE 8 /* should not be > 255 */ #define getshort(b) getbytes((b), 2) #define getint(b) getbytes((b), 4) // ----------------------------------------------------------------------- // internal types typedef struct Buffer Buffer; typedef struct Edge Edge; typedef struct ActiveEdge ActiveEdge; typedef struct Point Point; struct Buffer { uchar *data; int cursor; int size; }; struct Edge { float x0, y0, x1,y1; int invert; }; struct ActiveEdge { struct ActiveEdge *next; float fx,fdx,fdy; float direction; float sy; float ey; }; struct Point { float x,y; }; // ----------------------------------------------------------------------- // opaque external types struct font·Info { struct { void *heap; union { mem·Allocator; mem·Allocator mal; }; }; uchar *data; // pointer to .ttf file int fontstart; // offset of start of font int numglyphs; // number of glyphs, needed for range checking int loca,head,glyf,hhea,hmtx,kern,gpos,svg; // table locations as offset from start of .ttf int index_map; // a cmap mapping for our chosen character encoding int indexToLocFormat; // format needed to map from glyph index to glyph Buffer cff; // cff font data Buffer charstrings; // the charstring index Buffer gsubrs; // global charstring subroutines index Buffer subrs; // private charstring subroutines index Buffer fontdicts; // array of font dicts Buffer fdselect; // map from glyph to fontdict }; struct font·Bitmap { int w; int h; int stride; uchar *pixels; }; typedef int test_oversample_pow2[(SAMPLE & (SAMPLE-1)) == 0 ? 1 : -1]; // ----------------------------------------------------------------------- // buffer helpers to parse data from file static uchar getbyte(Buffer *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor++]; } static uchar peek(Buffer *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor]; } static void seek(Buffer *b, int o) { assert(!(o > b->size || o < 0)); b->cursor = (o > b->size || o < 0) ? b->size : o; } static void skip(Buffer *b, int o) { seek(b, b->cursor + o); } static uint32 getbytes(Buffer *b, int n) { uint32 v; int i; assert(n >= 1 && n <= 4); v = 0; for (i = 0; i < n; i++) v = (v << 8) | getbyte(b); return v; } static Buffer makebuffer(void *p, uintptr size) { Buffer r; assert(size < 0x40000000); r.data = (uchar*) p; r.size = (int)size; r.cursor = 0; return r; } static Buffer slice(Buffer *b, int o, int s) { Buffer r = makebuffer(nil, 0); if (o < 0 || s < 0 || o > b->size || s > b->size - o) return r; r.data = b->data + o; r.size = s; return r; } static Buffer cff_index(Buffer *b) { int count, start, offsize; start = b->cursor; count = getshort(b); if (count) { offsize = getbyte(b); assert(offsize >= 1 && offsize <= 4); skip(b, offsize * count); skip(b, getbytes(b, offsize) - 1); } return slice(b, start, b->cursor - start); } static uint32 cff_int(Buffer *b) { int b0 = getbyte(b); if (b0 >= 32 && b0 <= 246) return +b0 - 139; else if (b0 >= 247 && b0 <= 250) return +(b0 - 247)*256 + getbyte(b) + 108; else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - getbyte(b) - 108; else if (b0 == 28) return +getshort(b); else if (b0 == 29) return +getint(b); panicf("unreachable"); return 0; } static void skip_operand(Buffer *b) { int v, b0 = peek(b); assert(b0 >= 28); if (b0 == 30) { skip(b, 1); while (b->cursor < b->size) { v = getbyte(b); if ((v & 0xF) == 0xF || (v >> 4) == 0xF) break; } } else { cff_int(b); } } static Buffer dict_get(Buffer *b, int key) { seek(b, 0); while (b->cursor < b->size) { int start = b->cursor, end, op; while (peek(b) >= 28) skip_operand(b); end = b->cursor; op = getbyte(b); if (op == 12) op = getbyte(b) | 0x100; if (op == key) return slice(b, start, end-start); } return slice(b, 0, 0); } static void dict_get_ints(Buffer *b, int key, int outcount, uint32 *out) { int i; Buffer operands = dict_get(b, key); for (i = 0; i < outcount && operands.cursor < operands.size; i++) out[i] = cff_int(&operands); } static int cff_index_count(Buffer *b) { seek(b, 0); return getshort(b); } static Buffer cff_index_get(Buffer b, int i) { int count, offsize, start, end; seek(&b, 0); count = getshort(&b); offsize = getbyte(&b); assert(i >= 0 && i < count); assert(offsize >= 1 && offsize <= 4); skip(&b, i*offsize); start = getbytes(&b, offsize); end = getbytes(&b, offsize); return slice(&b, 2+(count+1)*offsize+start, end - start); } // ----------------------------------------------------------------------- // accessors to parse data from file /* * on platforms that don't allow misaligned reads, if we want to allow * truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE */ #define ttBYTE(p) (* (uchar *) (p)) #define ttCHAR(p) (* (char *) (p)) #define ttFixed(p) ttlong(p) static ushort ttushort(uchar *p) { return p[0]*256 + p[1]; } static short ttshort(uchar *p) { return p[0]*256 + p[1]; } static uint32 ttulong(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } static int32 ttlong(uchar *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } #define ttf·tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3)) #define ttf·tag(p,str) ttf·tag4(p,str[0],str[1],str[2],str[3]) static int isfont(uchar *font) { // check the version number if (ttf·tag4(font, '1',0,0,0)) return 1; // TrueType 1 if (ttf·tag(font, "typ1")) return 1; // TrueType with type 1 font -- we don't support this! if (ttf·tag(font, "OTTO")) return 1; // OpenType with CFF if (ttf·tag4(font, 0,1,0,0)) return 1; // OpenType 1.0 if (ttf·tag(font, "true")) return 1; // Apple specification for TrueType fonts return 0; } // @OPTIMIZE: binary search static uint32 find_table(uchar *data, uint32 offset, char *tag) { int i; int32 ntab; uint32 tabdir, loc; ntab = ttushort(data+offset+4); tabdir = offset + 12; for (i=0; i < ntab; ++i) { loc = tabdir + 16*i; if (ttf·tag(data+loc+0, tag)) return ttulong(data+loc+8); } return 0; } int font·offsetfor(uchar *font_collection, int index) { // if it's just a font, there's only one valid index if (isfont(font_collection)) return index == 0 ? 0 : -1; // check if it's a TTC if (ttf·tag(font_collection, "ttcf")) { // version 1? if (ttulong(font_collection+4) == 0x00010000 || ttulong(font_collection+4) == 0x00020000) { int32 n = ttlong(font_collection+8); if (index >= n) return -1; return ttulong(font_collection+12+index*4); } } return -1; } int font·number(uchar *font_collection) { // if it's just a font, there's only one valid font if (isfont(font_collection)) return 1; // check if it's a TTC if (ttf·tag(font_collection, "ttcf")) { // version 1? if (ttulong(font_collection+4) == 0x00010000 || ttulong(font_collection+4) == 0x00020000) { return ttlong(font_collection+8); } } return 0; } static Buffer get_subrs(Buffer cff, Buffer fontdict) { uint32 subrsoff = 0, private_loc[2] = { 0, 0 }; Buffer pdict; dict_get_ints(&fontdict, 18, 2, private_loc); if (!private_loc[1] || !private_loc[0]) return makebuffer(nil, 0); pdict = slice(&cff, private_loc[1], private_loc[0]); dict_get_ints(&pdict, 19, 1, &subrsoff); if (!subrsoff) return makebuffer(nil, 0); seek(&cff, private_loc[1]+subrsoff); return cff_index(&cff); } // since most people won't use this, find this table the first time it's needed static int get_svg(font·Info *info) { uint32 t; if (info->svg < 0) { t = find_table(info->data, info->fontstart, "SVG "); if (t) { uint32 offset = ttulong(info->data + t + 2); info->svg = t + offset; } else { info->svg = 0; } } return info->svg; } static int init(font·Info *info, uchar *data, int offset) { uint32 cmap, t; int32 i, ntab; info->data = data; info->fontstart = offset; info->cff = makebuffer(nil, 0); cmap = find_table(data, offset, "cmap"); // required info->loca = find_table(data, offset, "loca"); // required info->head = find_table(data, offset, "head"); // required info->glyf = find_table(data, offset, "glyf"); // required info->hhea = find_table(data, offset, "hhea"); // required info->hmtx = find_table(data, offset, "hmtx"); // required info->kern = find_table(data, offset, "kern"); // not required info->gpos = find_table(data, offset, "GPOS"); // not required if (!cmap || !info->head || !info->hhea || !info->hmtx) return 1; if (info->glyf) { // required for truetype if (!info->loca) return 1; } else { // initialization for CFF / Type2 fonts (OTF) Buffer b, topdict, topdictidx; uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0; uint32 cff; cff = find_table(data, offset, "CFF "); if (!cff) return 1; info->fontdicts = makebuffer(nil, 0); info->fdselect = makebuffer(nil, 0); // @TODO this should use size from table (not 512MB) info->cff = makebuffer(data+cff, 512*1024*1024); b = info->cff; // read the header skip(&b, 2); seek(&b, getbyte(&b)); // hdrsize // @TODO the name INDEX could list multiple fonts, // but we just use the first one. cff_index(&b); // name INDEX topdictidx = cff_index(&b); topdict = cff_index_get(topdictidx, 0); cff_index(&b); // string INDEX info->gsubrs = cff_index(&b); dict_get_ints(&topdict, 17, 1, &charstrings); dict_get_ints(&topdict, 0x100 | 6, 1, &cstype); dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff); dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff); info->subrs = get_subrs(b, topdict); // we only support Type 2 charstrings if (cstype != 2) return 1; if (charstrings == 0) return 1; if (fdarrayoff) { // looks like a CID font if (!fdselectoff) return 1; seek(&b, fdarrayoff); info->fontdicts = cff_index(&b); info->fdselect = slice(&b, fdselectoff, b.size-fdselectoff); } seek(&b, charstrings); info->charstrings = cff_index(&b); } t = find_table(data, offset, "maxp"); if (t) info->numglyphs = ttushort(data+t+4); else info->numglyphs = 0xffff; info->svg = -1; // find a cmap encoding table we understand *now* to avoid searching // later. (todo: could make this installable) // the same regardless of glyph. ntab = ttushort(data + cmap + 2); info->index_map = 0; for (i=0; i < ntab; ++i) { uint32 encoding_record = cmap + 4 + 8 * i; // find an encoding we understand: switch(ttushort(data+encoding_record)) { case font·platform_unicode: // Mac/iOS has these // all the encodingIDs are unicode, so we don't bother to check it info->index_map = cmap + ttulong(data+encoding_record+4); break; default: ; } } if (info->index_map == 0) { return 1; } info->indexToLocFormat = ttushort(data+info->head + 50); return 0; } font·Info * font·make(uchar *file, int offset, mem·Allocator mem, void *heap) { int err; font·Info *info; info = mem.alloc(heap, 1, sizeof(*info)); info->mal = mem; info->heap = heap; err = init(info, file, offset); if (err) { mem.free(heap, info); info = nil; } return info; } void font·free(font·Info *info) { void *heap; mem·Allocator mem; heap = info->heap; mem = info->mal; mem.free(heap, info); } int font·glyph_index(font·Info *info, int unicode_codepoint) { uchar *data; ushort fmt; uint32 index_map; union { int32 bytes; struct { uint32 first; uint32 count; }; struct { ushort segcount; ushort srchrange; ushort entrysel; ushort rangeshft; uint32 end; uint32 search; }; struct { uint32 begg, begc, endc, ngroups; int32 low, mid, high; }; } v; data = info->data; index_map = info->index_map; fmt = ttushort(data + index_map + 0); switch (fmt) { case 0: /* apple byte encoding */ v.bytes = ttushort(data + index_map + 2); if (unicode_codepoint < v.bytes-6) return ttBYTE(data + index_map + 6 + unicode_codepoint); return 0; case 6: v.first = ttushort(data + index_map + 6); v.count = ttushort(data + index_map + 8); if ((uint32)unicode_codepoint >= v.first && (uint32)unicode_codepoint < v.first+v.count) return ttushort(data + index_map + 10 + (unicode_codepoint - v.first)*2); return 0; case 2: panicf("high-byte mapping for asian characters not implemented"); return 0; case 4: /* standard mapping for windows fonts: binary search collection of ranges */ v.segcount = ttushort(data+index_map+6) >> 1; v.srchrange = ttushort(data+index_map+8) >> 1; v.entrysel = ttushort(data+index_map+10); v.rangeshft = ttushort(data+index_map+12) >> 1; // do a binary search of the segments v.end = index_map + 14; v.search = v.end; if (unicode_codepoint > 0xffff) return 0; // they lie from endCount .. endCount + segCount // but searchRange is the nearest power of two, so... if (unicode_codepoint >= ttushort(data + v.search + v.rangeshft*2)) v.search += v.rangeshft*2; // now decrement to bias correctly to find smallest v.search -= 2; while (v.entrysel) { ushort end; v.srchrange >>= 1; end = ttushort(data + v.search + v.srchrange*2); if (unicode_codepoint > end) v.search += v.srchrange*2; --v.entrysel; } v.search += 2; { ushort offset, start; ushort item = (ushort) ((v.search - v.end) >> 1); assert(unicode_codepoint <= ttushort(data + v.end+ 2*item)); start = ttushort(data + index_map + 14 + v.segcount*2 + 2 + 2*item); if (unicode_codepoint < start) return 0; offset = ttushort(data + index_map + 14 + v.segcount*6 + 2 + 2*item); if (offset == 0) return (ushort) (unicode_codepoint + ttshort(data + index_map + 14 + v.segcount*4 + 2 + 2*item)); return ttushort(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + v.segcount*6 + 2 + 2*item); } case 12: case 13: v.ngroups = ttulong(data+index_map+12); v.low = 0; v.high = (int32)v.ngroups; // Binary search the right group. while (v.low < v.high) { v.mid = v.low + ((v.high-v.low) >> 1); // rounds down, so low <= mid < high v.begc = ttulong(data+index_map+16+v.mid*12); v.endc = ttulong(data+index_map+16+v.mid*12+4); if ((uint32)unicode_codepoint < v.begc) v.high = v.mid; else if ((uint32) unicode_codepoint > v.endc) v.low = v.mid+1; else { v.begg = ttulong(data+index_map+16+v.mid*12+8); if (fmt == 12) return v.begg + unicode_codepoint-v.begc; else // fmt == 13 return v.begg; } } return 0; // not found default: ; } // @TODO assert(0); return 0; } int font·code_shape(font·Info *info, int unicode_codepoint, font·Vertex **verts) { return font·glyph_shape(info, font·glyph_index(info, unicode_codepoint), verts); } static void setvertex(font·Vertex *v, uchar type, int32 x, int32 y, int32 cx, int32 cy) { v->type = type; v->x = (short) x; v->y = (short) y; v->cx = (short) cx; v->cy = (short) cy; } static int glyph_offset(font·Info *info, int glyph_index) { int g1,g2; assert(!info->cff.size); if (glyph_index >= info->numglyphs) return -1; // glyph index out of range if (info->indexToLocFormat >= 2) return -1; // unknown index->glyph map format if (info->indexToLocFormat == 0) { g1 = info->glyf + ttushort(info->data + info->loca + glyph_index * 2) * 2; g2 = info->glyf + ttushort(info->data + info->loca + glyph_index * 2 + 2) * 2; } else { g1 = info->glyf + ttulong (info->data + info->loca + glyph_index * 4); g2 = info->glyf + ttulong (info->data + info->loca + glyph_index * 4 + 4); } return (g1==g2) ? -1 : g1; // if length is 0, return -1 } static int glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); int font·glyph_box(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { if (info->cff.size) { glyph_info_t2(info, glyph_index, x0, y0, x1, y1); } else { int g = glyph_offset(info, glyph_index); if (g < 0) return 0; if (x0) *x0 = ttshort(info->data + g + 2); if (y0) *y0 = ttshort(info->data + g + 4); if (x1) *x1 = ttshort(info->data + g + 6); if (y1) *y1 = ttshort(info->data + g + 8); } return 1; } int font·code_box(font·Info *info, int codepoint, int *x0, int *y0, int *x1, int *y1) { return font·glyph_box(info, font·glyph_index(info,codepoint), x0,y0,x1,y1); } int font·glyph_empty(font·Info *info, int glyph_index) { int g; short numc; if (info->cff.size) return glyph_info_t2(info, glyph_index, nil, nil, nil, nil) == 0; g = glyph_offset(info, glyph_index); if (g < 0) return 1; numc = ttshort(info->data + g); return numc == 0; } static int close_shape(font·Vertex *verts, int num_verts, int was_off, int start_off, int32 sx, int32 sy, int32 scx, int32 scy, int32 cx, int32 cy) { if (start_off) { if (was_off) setvertex(&verts[num_verts++], font·Vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy); setvertex(&verts[num_verts++], font·Vcurve, sx,sy,scx,scy); } else { if (was_off) setvertex(&verts[num_verts++], font·Vcurve,sx,sy,cx,cy); else setvertex(&verts[num_verts++], font·Vline,sx,sy,0,0); } return num_verts; } static int glyph_shape_tt(font·Info *info, int glyph_index, font·Vertex **pverts) { short numc; uchar *contourend; uchar *data = info->data; font·Vertex *verts = nil; int num_verts = 0; int g = glyph_offset(info, glyph_index); *pverts = nil; if (g < 0) return 0; numc = ttshort(data + g); if (numc > 0) { uchar flags=0, flagcount; int32 ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0; int32 x,y,cx,cy,sx,sy,scx,scy; uchar *points; contourend = (data + g + 10); ins = ttushort(data + g + 10 + numc * 2); points = data + g + 10 + numc * 2 + 2 + ins; n = 1+ttushort(contourend + numc*2-2); m = n + 2*numc; // a loose bound on how many verts we might need verts = info->alloc(info->heap, m, sizeof(verts[0])); if (verts == 0) return 0; next_move = 0; flagcount = 0; // in first pass, we load uninterpreted data into the allocated array // above, shifted to the end of the array so we won't overwrite it when // we create our final data starting from the front off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated // first load flags for (i=0; i < n; ++i) { if (flagcount == 0) { flags = *points++; if (flags & 8) flagcount = *points++; } else --flagcount; verts[off+i].type = flags; } // now load x coordinates x=0; for (i=0; i < n; ++i) { flags = verts[off+i].type; if (flags & 2) { short dx = *points++; x += (flags & 16) ? dx : -dx; // ??? } else { if (!(flags & 16)) { x = x + (short)(points[0]*256 + points[1]); points += 2; } } verts[off+i].x = (short)x; } // now load y coordinates y=0; for (i=0; i < n; ++i) { flags = verts[off+i].type; if (flags & 4) { short dy = *points++; y += (flags & 32) ? dy : -dy; // ??? } else { if (!(flags & 32)) { y = y + (short) (points[0]*256 + points[1]); points += 2; } } verts[off+i].y = (short)y; } // now convert them to our format num_verts=0; sx = sy = cx = cy = scx = scy = 0; for (i=0; i < n; ++i) { flags = verts[off+i].type; x = (short)verts[off+i].x; y = (short)verts[off+i].y; if (next_move == i) { if (i != 0) num_verts = close_shape(verts, num_verts, was_off, start_off, sx,sy,scx,scy,cx,cy); // now start the new one start_off = !(flags & 1); if (start_off) { // if we start off with an off-curve point, then when we need to find a point on the curve // where we can start, and we need to save some state for when we wraparound. scx = x; scy = y; if (!(verts[off+i+1].type & 1)) { // next point is also a curve point, so interpolate an on-point curve sx = (x + (int32) verts[off+i+1].x) >> 1; sy = (y + (int32) verts[off+i+1].y) >> 1; } else { // otherwise just use the next point as our start point sx = (int32) verts[off+i+1].x; sy = (int32) verts[off+i+1].y; ++i; // we're using point i+1 as the starting point, so skip it } } else { sx = x; sy = y; } setvertex(&verts[num_verts++], font·Vmove,sx,sy,0,0); was_off = 0; next_move = 1 + ttushort(contourend+j*2); ++j; } else { if (!(flags & 1)) { // if it's a curve if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint setvertex(&verts[num_verts++], font·Vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy); cx = x; cy = y; was_off = 1; } else { if (was_off) setvertex(&verts[num_verts++], font·Vcurve, x,y, cx, cy); else setvertex(&verts[num_verts++], font·Vline, x,y,0,0); was_off = 0; } } } num_verts = close_shape(verts, num_verts, was_off, start_off, sx, sy, scx, scy, cx, cy); } else if (numc < 0) { // Compound shapes. int more = 1; uchar *comp = data + g + 10; num_verts = 0; verts = 0; while (more) { ushort flags, gidx; int comp_num_verts = 0, i; font·Vertex *comp_verts = 0, *tmp = 0; float mtx[6] = {1,0,0,1,0,0}, m, n; flags = ttshort(comp); comp+=2; gidx = ttshort(comp); comp+=2; if (flags & 2) { // XY values if (flags & 1) { // shorts mtx[4] = ttshort(comp); comp+=2; mtx[5] = ttshort(comp); comp+=2; } else { mtx[4] = ttCHAR(comp); comp+=1; mtx[5] = ttCHAR(comp); comp+=1; } } else { // @TODO handle matching point assert(0); } if (flags & (1<<3)) { // WE_HAVE_A_SCALE mtx[0] = mtx[3] = ttshort(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; } else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE mtx[0] = ttshort(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; mtx[3] = ttshort(comp)/16384.0f; comp+=2; } else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO mtx[0] = ttshort(comp)/16384.0f; comp+=2; mtx[1] = ttshort(comp)/16384.0f; comp+=2; mtx[2] = ttshort(comp)/16384.0f; comp+=2; mtx[3] = ttshort(comp)/16384.0f; comp+=2; } // Find transformation scales. m = (float) sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]); n = (float) sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]); // Get indexed glyph. comp_num_verts = font·glyph_shape(info, gidx, &comp_verts); if (comp_num_verts > 0) { // Transform verts. for (i = 0; i < comp_num_verts; ++i) { font·Vertex* v = &comp_verts[i]; short x,y; x=v->x; y=v->y; v->x = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->y = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); x=v->cx; y=v->cy; v->cx = (short)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->cy = (short)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); } // Append verts. tmp = info->alloc(info->heap, num_verts+comp_num_verts, sizeof(font·Vertex)); if (!tmp) { if (verts) info->free(info->heap, verts); if (comp_verts) info->free(info->heap, comp_verts); return 0; } if (num_verts > 0) memcpy(tmp, verts, num_verts*sizeof(font·Vertex)); memcpy(tmp+num_verts, comp_verts, comp_num_verts*sizeof(font·Vertex)); if (verts) info->free(info->heap, verts); verts = tmp; info->free(info->heap, comp_verts); num_verts += comp_num_verts; } // More components ? more = flags & (1<<5); } } *pverts = verts; return num_verts; } typedef struct { int bounds; int started; float first_x, first_y; float x, y; int32 min_x, max_x, min_y, max_y; font·Vertex *pverts; int num_verts; } csctx; #define CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, nil, 0} static void track_vertex(csctx *c, int32 x, int32 y) { if (x > c->max_x || !c->started) c->max_x = x; if (y > c->max_y || !c->started) c->max_y = y; if (x < c->min_x || !c->started) c->min_x = x; if (y < c->min_y || !c->started) c->min_y = y; c->started = 1; } static void csctx_v(csctx *c, uchar type, int32 x, int32 y, int32 cx, int32 cy, int32 cx1, int32 cy1) { if (c->bounds) { track_vertex(c, x, y); if (type == font·Vcubic) { track_vertex(c, cx, cy); track_vertex(c, cx1, cy1); } } else { setvertex(&c->pverts[c->num_verts], type, x, y, cx, cy); c->pverts[c->num_verts].cx1 = (short) cx1; c->pverts[c->num_verts].cy1 = (short) cy1; } c->num_verts++; } static void csctx_close_shape(csctx *ctx) { if (ctx->first_x != ctx->x || ctx->first_y != ctx->y) csctx_v(ctx, font·Vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0); } static void csctx_rmove_to(csctx *ctx, float dx, float dy) { csctx_close_shape(ctx); ctx->first_x = ctx->x = ctx->x + dx; ctx->first_y = ctx->y = ctx->y + dy; csctx_v(ctx, font·Vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void csctx_rline_to(csctx *ctx, float dx, float dy) { ctx->x += dx; ctx->y += dy; csctx_v(ctx, font·Vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void csctx_rccurve_to(csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3) { float cx1 = ctx->x + dx1; float cy1 = ctx->y + dy1; float cx2 = cx1 + dx2; float cy2 = cy1 + dy2; ctx->x = cx2 + dx3; ctx->y = cy2 + dy3; csctx_v(ctx, font·Vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2); } static Buffer get_subr(Buffer idx, int n) { int count = cff_index_count(&idx); int bias = 107; if (count >= 33900) bias = 32768; else if (count >= 1240) bias = 1131; n += bias; if (n < 0 || n >= count) return makebuffer(nil, 0); return cff_index_get(idx, n); } static Buffer cid_get_glyph_subrs(font·Info *info, int glyph_index) { Buffer fdselect = info->fdselect; int nranges, start, end, v, fmt, fdselector = -1, i; seek(&fdselect, 0); fmt = getbyte(&fdselect); if (fmt == 0) { // untested skip(&fdselect, glyph_index); fdselector = getbyte(&fdselect); } else if (fmt == 3) { nranges = getshort(&fdselect); start = getshort(&fdselect); for (i = 0; i < nranges; i++) { v = getbyte(&fdselect); end = getshort(&fdselect); if (glyph_index >= start && glyph_index < end) { fdselector = v; break; } start = end; } } if (fdselector == -1) makebuffer(nil, 0); return get_subrs(info->cff, cff_index_get(info->fontdicts, fdselector)); } static int run_charstring(font·Info *info, int glyph_index, csctx *c) { int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0; int has_subrs = 0, clear_stack; float s[48]; Buffer subr_stack[10], subrs = info->subrs, b; float f; // this currently ignores the initial width value, which isn't needed if we have hmtx b = cff_index_get(info->charstrings, glyph_index); while (b.cursor < b.size) { i = 0; clear_stack = 1; b0 = getbyte(&b); switch (b0) { // @TODO implement hinting case 0x13: // hintmask case 0x14: // cntrmask if (in_header) maskbits += (sp / 2); // implicit "vstem" in_header = 0; skip(&b, (maskbits + 7) / 8); break; case 0x01: // hstem case 0x03: // vstem case 0x12: // hstemhm case 0x17: // vstemhm maskbits += (sp / 2); break; case 0x15: // rmoveto in_header = 0; if (sp < 2) { errorf("rmoveto stack"); return 0; } csctx_rmove_to(c, s[sp-2], s[sp-1]); break; case 0x04: // vmoveto in_header = 0; if (sp < 1) { errorf("vmoveto stack"); return 0; } csctx_rmove_to(c, 0, s[sp-1]); break; case 0x16: // hmoveto in_header = 0; if (sp < 1) { errorf("hmoveto stack"); return 0; } csctx_rmove_to(c, s[sp-1], 0); break; case 0x05: // rlineto if (sp < 2) { errorf("rlineto stack"); return 0; } for (; i + 1 < sp; i += 2) csctx_rline_to(c, s[i], s[i+1]); break; // hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical // starting from a different place. case 0x07: // vlineto if (sp < 1) { errorf("vlineto stack"); return 0; } goto vlineto; case 0x06: // hlineto if (sp < 1) { errorf("hlineto stack"); return 0; } for (;;) { if (i >= sp) break; csctx_rline_to(c, s[i], 0); i++; vlineto: if (i >= sp) break; csctx_rline_to(c, 0, s[i]); i++; } break; case 0x1F: // hvcurveto if (sp < 4) { errorf("hvcurveto stack"); return 0; } goto hvcurveto; case 0x1E: // vhcurveto if (sp < 4) { errorf("vhcurveto stack"); return 0; } for (;;) { if (i + 3 >= sp) break; csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f); i += 4; hvcurveto: if (i + 3 >= sp) break; csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]); i += 4; } break; case 0x08: // rrcurveto if (sp < 6) { errorf("rcurveline stack"); return 0; } for (; i + 5 < sp; i += 6) csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x18: // rcurveline if (sp < 8) { errorf("rcurveline stack"); return 0; } for (; i + 5 < sp - 2; i += 6) csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); if (i + 1 >= sp) { errorf("rcurveline stack"); return 0; } csctx_rline_to(c, s[i], s[i+1]); break; case 0x19: // rlinecurve if (sp < 8) { errorf("rlinecurve stack"); return 0; } for (; i + 1 < sp - 6; i += 2) csctx_rline_to(c, s[i], s[i+1]); if (i + 5 >= sp) { errorf("rlinecurve stack"); return 0; } csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x1A: // vvcurveto case 0x1B: // hhcurveto if (sp < 4) { errorf("(vv|hh)curveto stack"); return 0; } f = 0.0; if (sp & 1) { f = s[i]; i++; } for (; i + 3 < sp; i += 4) { if (b0 == 0x1B) csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0); else csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]); f = 0.0; } break; case 0x0A: // callsubr if (!has_subrs) { if (info->fdselect.size) subrs = cid_get_glyph_subrs(info, glyph_index); has_subrs = 1; } // fallthrough case 0x1D: // callgsubr if (sp < 1) { errorf("call(g|)subr stack"); return 0; } v = (int) s[--sp]; if (subr_stack_height >= 10) { errorf("recursion limit"); return 0; } subr_stack[subr_stack_height++] = b; b = get_subr(b0 == 0x0A ? subrs : info->gsubrs, v); if (b.size == 0) { errorf("subr not found"); return 0; } b.cursor = 0; clear_stack = 0; break; case 0x0B: // return if (subr_stack_height <= 0) { errorf("return outside subr"); return 0; } b = subr_stack[--subr_stack_height]; clear_stack = 0; break; case 0x0E: // endchar csctx_close_shape(c); return 1; case 0x0C: { // two-byte escape float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6; float dx, dy; int b1 = getbyte(&b); switch (b1) { // @TODO These "flex" implementations ignore the flex-depth and resolution, // and always draw beziers. case 0x22: // hflex if (sp < 7) { errorf("hflex stack"); return 0; } dx1 = s[0]; dx2 = s[1]; dy2 = s[2]; dx3 = s[3]; dx4 = s[4]; dx5 = s[5]; dx6 = s[6]; csctx_rccurve_to(c, dx1, 0, dx2, dy2, dx3, 0); csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0); break; case 0x23: // flex if (sp < 13) { errorf("flex stack"); return 0; } dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = s[10]; dy6 = s[11]; //fd is s[12] csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; case 0x24: // hflex1 if (sp < 9) { errorf("hflex1 stack"); return 0; } dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dx4 = s[5]; dx5 = s[6]; dy5 = s[7]; dx6 = s[8]; csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0); csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5)); break; case 0x25: // flex1 if (sp < 11) { errorf("flex1 stack"); return 0; } dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = dy6 = s[10]; dx = dx1+dx2+dx3+dx4+dx5; dy = dy1+dy2+dy3+dy4+dy5; if (fabs(dx) > fabs(dy)) dy6 = -dy; else dx6 = -dx; csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; default: panicf("unimplemented"); return 0; } } break; default: if (b0 != 255 && b0 != 28 && (b0 < 32 || b0 > 254)) { errorf("reserved operator"); return 0; } // push immediate if (b0 == 255) { f = (float)(int32)getint(&b) / 0x10000; } else { skip(&b, -1); f = (float)(short)cff_int(&b); } if (sp >= 48) { errorf("push stack overflow"); return 0; } s[sp++] = f; clear_stack = 0; break; } if (clear_stack) sp = 0; } errorf("no endchar"); return 0; } static int glyph_shape_t2(font·Info *info, int glyph_index, font·Vertex **pverts) { // runs the charstring twice, once to count and once to output (to avoid realloc) csctx count_ctx = CSCTX_INIT(1); csctx output_ctx = CSCTX_INIT(0); if (run_charstring(info, glyph_index, &count_ctx)) { *pverts = info->alloc(info->heap, count_ctx.num_verts, sizeof(font·Vertex)); output_ctx.pverts = *pverts; if (run_charstring(info, glyph_index, &output_ctx)) { assert(output_ctx.num_verts == count_ctx.num_verts); return output_ctx.num_verts; } } *pverts = nil; return 0; } static int glyph_info_t2(font·Info *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { csctx c = CSCTX_INIT(1); int r = run_charstring(info, glyph_index, &c); if (x0) *x0 = r ? c.min_x : 0; if (y0) *y0 = r ? c.min_y : 0; if (x1) *x1 = r ? c.max_x : 0; if (y1) *y1 = r ? c.max_y : 0; return r ? c.num_verts : 0; } int font·glyph_shape(font·Info *info, int glyph_index, font·Vertex **pverts) { if (!info->cff.size) return glyph_shape_tt(info, glyph_index, pverts); else return glyph_shape_t2(info, glyph_index, pverts); } void font·glyph_hmetrics(font·Info *info, int glyph_index, int *adv, int *lsb) { ushort n; n = ttushort(info->data+info->hhea + 34); if (glyph_index < n) { if (adv) *adv = ttshort(info->data + info->hmtx + 4*glyph_index); if (lsb) *lsb = ttshort(info->data + info->hmtx + 4*glyph_index + 2); } else { if (adv) *adv = ttshort(info->data + info->hmtx + 4*(n-1)); if (lsb) *lsb = ttshort(info->data + info->hmtx + 4*n + 2*(glyph_index - n)); } } int font·kerntablen(font·Info *info) { uchar *data = info->data + info->kern; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttushort(data+2) < 1) // number of tables, need at least 1 return 0; if (ttushort(data+8) != 1) // horizontal flag must be set in format return 0; return ttushort(data+10); } int font·kerntab(font·Info *info, font·TabElt* table, int table_length) { uchar *data = info->data + info->kern; int k, length; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttushort(data+2) < 1) // number of tables, need at least 1 return 0; if (ttushort(data+8) != 1) // horizontal flag must be set in format return 0; length = ttushort(data+10); if (table_length < length) length = table_length; for (k = 0; k < length; k++) { table[k].glyph1 = ttushort(data+18+(k*6)); table[k].glyph2 = ttushort(data+20+(k*6)); table[k].advance = ttshort(data+22+(k*6)); } return length; } static int glyph_kernadvance(font·Info *info, int glyph1, int glyph2) { uchar *data = info->data + info->kern; uint32 needle, straw; int l, r, m; // we only look at the first table. it must be 'horizontal' and format 0. if (!info->kern) return 0; if (ttushort(data+2) < 1) // number of tables, need at least 1 return 0; if (ttushort(data+8) != 1) // horizontal flag must be set in format return 0; l = 0; r = ttushort(data+10) - 1; needle = glyph1 << 16 | glyph2; while (l <= r) { m = (l + r) >> 1; straw = ttulong(data+18+(m*6)); // note: unaligned read if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else return ttshort(data+22+(m*6)); } return 0; } static int32 coverage_index(uchar *coverageTable, int glyph) { ushort coverageFormat = ttushort(coverageTable); switch(coverageFormat) { case 1: { ushort glyphCount = ttushort(coverageTable + 2); // Binary search. int32 l=0, r=glyphCount-1, m; int straw, needle=glyph; while (l <= r) { uchar *glyphArray = coverageTable + 4; ushort glyphID; m = (l + r) >> 1; glyphID = ttushort(glyphArray + 2 * m); straw = glyphID; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { return m; } } } break; case 2: { ushort rangeCount = ttushort(coverageTable + 2); uchar *rangeArray = coverageTable + 4; // Binary search. int32 l=0, r=rangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { uchar *rangeRecord; m = (l + r) >> 1; rangeRecord = rangeArray + 6 * m; strawStart = ttushort(rangeRecord); strawEnd = ttushort(rangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else { ushort startCoverageIndex = ttushort(rangeRecord + 4); return startCoverageIndex + glyph - strawStart; } } } break; default: { // There are no other cases. assert(0); } break; } return -1; } static int32 glyph_class(uchar *classDefTable, int glyph) { ushort classDefFormat = ttushort(classDefTable); switch(classDefFormat) { case 1: { ushort startGlyphID = ttushort(classDefTable + 2); ushort glyphCount = ttushort(classDefTable + 4); uchar *classDef1ValueArray = classDefTable + 6; if (glyph >= startGlyphID && glyph < startGlyphID + glyphCount) return (int32)ttushort(classDef1ValueArray + 2 * (glyph - startGlyphID)); classDefTable = classDef1ValueArray + 2 * glyphCount; } break; case 2: { ushort classRangeCount = ttushort(classDefTable + 2); uchar *classRangeRecords = classDefTable + 4; // Binary search. int32 l=0, r=classRangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { uchar *classRangeRecord; m = (l + r) >> 1; classRangeRecord = classRangeRecords + 6 * m; strawStart = ttushort(classRangeRecord); strawEnd = ttushort(classRangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else return (int32)ttushort(classRangeRecord + 4); } classDefTable = classRangeRecords + 6 * classRangeCount; } break; default: { // There are no other cases. assert(0); } break; } return -1; } static int32 glyph_gposadvance(font·Info *info, int glyph1, int glyph2) { ushort lookupListOffset; uchar *lookupList; ushort lookupCount; uchar *data; int32 i; if (!info->gpos) return 0; data = info->data + info->gpos; if (ttushort(data+0) != 1) return 0; // Major version 1 if (ttushort(data+2) != 0) return 0; // Minor version 0 lookupListOffset = ttushort(data+8); lookupList = data + lookupListOffset; lookupCount = ttushort(lookupList); for (i=0; i> 1; pairValue = pairValueArray + (2 + valueRecordPairSizeInBytes) * m; secondGlyph = ttushort(pairValue); straw = secondGlyph; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { short xAdvance = ttshort(pairValue + 2); return xAdvance; } } } break; case 2: { ushort valueFormat1 = ttushort(table + 4); ushort valueFormat2 = ttushort(table + 6); ushort classDef1Offset = ttushort(table + 8); ushort classDef2Offset = ttushort(table + 10); int glyph1class = glyph_class(table + classDef1Offset, glyph1); int glyph2class = glyph_class(table + classDef2Offset, glyph2); ushort class1Count = ttushort(table + 12); ushort class2Count = ttushort(table + 14); assert(glyph1class < class1Count); assert(glyph2class < class2Count); // TODO: Support more formats. if (valueFormat1 != 4) return 0; if (valueFormat2 != 0) return 0; if (glyph1class >= 0 && glyph1class < class1Count && glyph2class >= 0 && glyph2class < class2Count) { uchar *class1Records = table + 16; uchar *class2Records = class1Records + 2 * (glyph1class * class2Count); short xAdvance = ttshort(class2Records + 2 * glyph2class); return xAdvance; } } break; default: { // There are no other cases. assert(0); break; }; } } break; }; default: // TODO: Implement other stuff. break; } } return 0; } int font·glyph_kernadvance(font·Info *info, int g1, int g2) { int xAdvance = 0; if (info->gpos) xAdvance += glyph_gposadvance(info, g1, g2); else if (info->kern) xAdvance += glyph_kernadvance(info, g1, g2); return xAdvance; } int font·code_kernadvance(font·Info *info, int ch1, int ch2) { if (!info->kern && !info->gpos) // if no kerning table, don't waste time looking up both codepoint->glyphs return 0; return font·glyph_kernadvance(info, font·glyph_index(info,ch1), font·glyph_index(info,ch2)); } void font·code_hmetrics(font·Info *info, int codepoint, int *advanceWidth, int *lsb) { font·glyph_hmetrics(info, font·glyph_index(info,codepoint), advanceWidth, lsb); } void font·vmetrics(font·Info *info, int *ascent, int *descent, int *lineGap) { if (ascent ) *ascent = ttshort(info->data+info->hhea + 4); if (descent) *descent = ttshort(info->data+info->hhea + 6); if (lineGap) *lineGap = ttshort(info->data+info->hhea + 8); } void font·bbox(font·Info *info, int *x0, int *y0, int *x1, int *y1) { *x0 = ttshort(info->data + info->head + 36); *y0 = ttshort(info->data + info->head + 38); *x1 = ttshort(info->data + info->head + 40); *y1 = ttshort(info->data + info->head + 42); } float font·scaleheightto(font·Info *info, float height) { int fheight = ttshort(info->data + info->hhea + 4) - ttshort(info->data + info->hhea + 6); return (float) height / fheight; } float font·scaleheighttoem(font·Info *info, float pixels) { int unitsPerEm = ttushort(info->data + info->head + 18); return pixels / unitsPerEm; } void font·freeshape(font·Info *info, font·Vertex *v) { info->free(info->heap, v); } static uchar * find_svg(font·Info *info, int gl) { int i; uchar *data = info->data; uchar *svg_doc_list = data + get_svg((font·Info *) info); int numEntries = ttushort(svg_doc_list); uchar *svg_docs = svg_doc_list + 2; for(i=0; i= ttushort(svg_doc)) && (gl <= ttushort(svg_doc + 2))) return svg_doc; } return 0; } int font·glyph_svg(font·Info *info, int gl, char **svg) { uchar *data = info->data; uchar *svg_doc; if (info->svg == 0) return 0; svg_doc = find_svg(info, gl); if (svg_doc != nil) { *svg = (char *) data + info->svg + ttulong(svg_doc + 4); return ttulong(svg_doc + 8); } else { return 0; } } int font·code_svg(font·Info *info, int unicode_codepoint, char **svg) { return font·glyph_svg(info, font·glyph_index(info, unicode_codepoint), svg); } // ----------------------------------------------------------------------- // antialiasing software rasterizer void font·glyph_bitmapbox_subpixel(font·Info *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { int x0=0,y0=0,x1,y1; if (!font·glyph_box(font, glyph, &x0,&y0,&x1,&y1)) { // e.g. space character if (ix0) *ix0 = 0; if (iy0) *iy0 = 0; if (ix1) *ix1 = 0; if (iy1) *iy1 = 0; } else { // move to integral bboxes (treating pixels as little squares, what pixels get touched)? if (ix0) *ix0 = (int)floor( x0 * scale_x + shift_x); if (iy0) *iy0 = (int)floor(-y1 * scale_y + shift_y); if (ix1) *ix1 = (int)ceil( x1 * scale_x + shift_x); if (iy1) *iy1 = (int)ceil(-y0 * scale_y + shift_y); } } void font·glyph_bitmapbox(font·Info *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { font·glyph_bitmapbox_subpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1); } void font·code_bitmapbox_subpixel(font·Info *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { font·glyph_bitmapbox_subpixel(font, font·glyph_index(font,codepoint), scale_x, scale_y, shift_x, shift_y, ix0, iy0, ix1, iy1); } void font·code_bitmapbox(font·Info *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { font·code_bitmapbox_subpixel(font, codepoint, scale_x, scale_y, 0.0f, 0.0f, ix0, iy0, ix1, iy1); } // ------------------------------------------------------------------------ // Rasterizer typedef struct hheap_chunk { struct hheap_chunk *next; } hheap_chunk; typedef struct hheap { struct hheap_chunk *head; void *first_free; int nrem; } hheap; static void * hheap_alloc(hheap *hh, uintptr size, mem·Allocator mem, void *heap) { int n; void *p; if (hh->first_free) { p = hh->first_free; hh->first_free = * (void **) p; return p; } else { if (hh->nrem == 0) { n = (size < 32 ? 2000 : size < 128 ? 800 : 100); hheap_chunk *c = mem.alloc(heap, 1, sizeof(hheap_chunk) + size * n); if (c == nil) return nil; c->next = hh->head; hh->head = c; hh->nrem = n; } --hh->nrem; return (char *)(hh->head) + sizeof(hheap_chunk) + size * hh->nrem; } } static void hheap_free(hheap *hh, void *p) { *(void **) p = hh->first_free; hh->first_free = p; } static void hheap_cleanup(hheap *hh, mem·Allocator mem, void *heap) { hheap_chunk *c = hh->head; while (c) { hheap_chunk *n = c->next; mem.free(heap, c); c = n; } } static ActiveEdge * new_active(hheap *hh, Edge *e, int off_x, float start_point, mem·Allocator mem, void *heap) { ActiveEdge *z = (ActiveEdge *) hheap_alloc(hh, sizeof(*z), mem, heap); float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); assert(z != nil); //assert(e->y0 <= start_point); if (!z) return z; z->fdx = dxdy; z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f; z->fx = e->x0 + dxdy * (start_point - e->y0); z->fx -= off_x; z->direction = e->invert ? 1.0f : -1.0f; z->sy = e->y0; z->ey = e->y1; z->next = 0; return z; } // the edge passed in here does not cross the vertical line at x or the vertical line at x+1 // (i.e. it has already been clipped to those) static void handle_clipped_edge(float *scanline, int x, ActiveEdge *e, float x0, float y0, float x1, float y1) { if (y0 == y1) return; assert(y0 < y1); assert(e->sy <= e->ey); if (y0 > e->ey) return; if (y1 < e->sy) return; if (y0 < e->sy) { x0 += (x1-x0) * (e->sy - y0) / (y1-y0); y0 = e->sy; } if (y1 > e->ey) { x1 += (x1-x0) * (e->ey - y1) / (y1-y0); y1 = e->ey; } if (x0 == x) assert(x1 <= x+1); else if (x0 == x+1) assert(x1 >= x); else if (x0 <= x) assert(x1 <= x); else if (x0 >= x+1) assert(x1 >= x+1); else assert(x1 >= x && x1 <= x+1); if (x0 <= x && x1 <= x) scanline[x] += e->direction * (y1-y0); else if (x0 >= x+1 && x1 >= x+1) ; else { assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1); scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); // coverage = 1 - average x position } } static void fill_active_edges_new(float *scanline, float *scanline_fill, int len, ActiveEdge *e, float y_top) { float y_bottom = y_top+1; while (e) { // brute force every pixel // compute intersection points with top & bottom assert(e->ey >= y_top); if (e->fdx == 0) { float x0 = e->fx; if (x0 < len) { if (x0 >= 0) { handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom); handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom); } else { handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom); } } } else { float x0 = e->fx; float dx = e->fdx; float xb = x0 + dx; float x_top, x_bottom; float sy0,sy1; float dy = e->fdy; assert(e->sy <= y_bottom && e->ey >= y_top); // compute endpoints of line segment clipped to this scanline (if the // line segment starts on this scanline. x0 is the intersection of the // line with y_top, but that may be off the line segment. if (e->sy > y_top) { x_top = x0 + dx * (e->sy - y_top); sy0 = e->sy; } else { x_top = x0; sy0 = y_top; } if (e->ey < y_bottom) { x_bottom = x0 + dx * (e->ey - y_top); sy1 = e->ey; } else { x_bottom = xb; sy1 = y_bottom; } if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len) { // from here on, we don't have to range check x values if ((int) x_top == (int) x_bottom) { float height; // simple case, only spans one pixel int x = (int) x_top; height = sy1 - sy0; assert(x >= 0 && x < len); scanline[x] += e->direction * (1-((x_top - x) + (x_bottom-x))/2) * height; scanline_fill[x] += e->direction * height; // everything right of this pixel is filled } else { int x,x1,x2; float y_crossing, step, sign, area; // covers 2+ pixels if (x_top > x_bottom) { // flip scanline vertically; signed area is the same float t; sy0 = y_bottom - (sy0 - y_top); sy1 = y_bottom - (sy1 - y_top); t = sy0, sy0 = sy1, sy1 = t; t = x_bottom, x_bottom = x_top, x_top = t; dx = -dx; dy = -dy; t = x0, x0 = xb, xb = t; } x1 = (int) x_top; x2 = (int) x_bottom; // compute intersection with y axis at x1+1 y_crossing = (x1+1 - x0) * dy + y_top; sign = e->direction; // area of the rectangle covered from y0..y_crossing area = sign * (y_crossing-sy0); // area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing) scanline[x1] += area * (1-((x_top - x1)+(x1+1-x1))/2); step = sign * dy; for (x = x1+1; x < x2; ++x) { scanline[x] += area + step/2; area += step; } y_crossing += dy * (x2 - (x1+1)); assert(fabs(area) <= 1.01f); scanline[x2] += area + sign * (1-((x2-x2)+(x_bottom-x2))/2) * (sy1-y_crossing); scanline_fill[x2] += sign * (sy1-sy0); } } else { // if edge goes outside of box we're drawing, we require // clipping logic. since this does not match the intended use // of this library, we use a different, very slow brute // force implementation int x; for (x=0; x < len; ++x) { // cases: // // there can be up to two intersections with the pixel. any intersection // with left or right edges can be handled by splitting into two (or three) // regions. intersections with top & bottom do not necessitate case-wise logic. // // the old way of doing this found the intersections with the left & right edges, // then used some simple logic to produce up to three segments in sorted order // from top-to-bottom. however, this had a problem: if an x edge was epsilon // across the x border, then the corresponding y position might not be distinct // from the other y segment, and it might ignored as an empty segment. to avoid // that, we need to explicitly produce segments based on x positions. // rename variables to clearly-defined pairs float y0 = y_top; float x1 = (float) (x); float x2 = (float) (x+1); float x3 = xb; float y3 = y_bottom; // x = e->x + e->dx * (y-y_top) // (y-y_top) = (x - e->x) / e->dx // y = (x - e->x) / e->dx + y_top float y1 = (x - x0) / dx + y_top; float y2 = (x+1 - x0) / dx + y_top; if (x0 < x1 && x3 > x2) { // three segments descending down-right handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); handle_clipped_edge(scanline,x,e, x1,y1, x2,y2); handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x1 && x0 > x2) { // three segments descending down-left handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); handle_clipped_edge(scanline,x,e, x2,y2, x1,y1); handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x1 && x3 > x1) { // two segments across x, down-right handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x3 < x1 && x0 > x1) { // two segments across x, down-left handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x2 && x3 > x2) { // two segments across x+1, down-right handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x2 && x0 > x2) { // two segments across x+1, down-left handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else { // one segment handle_clipped_edge(scanline,x,e, x0,y0, x3,y3); } } } } e = e->next; } } // directly AA rasterize edges w/o supersampling static void rasterize_sorted_edges(font·Bitmap *result, Edge *e, int n, int vsubsample, int off_x, int off_y, mem·Allocator mem, void *heap) { hheap hh = { 0 }; ActiveEdge *active = nil; int y,j=0, i; float scanline_data[129], *scanline, *scanline2; if (result->w > 64) scanline = mem.alloc(heap, (result->w*2+1), sizeof(float)); else scanline = scanline_data; scanline2 = scanline + result->w; y = off_y; e[n].y0 = (float) (off_y + result->h) + 1; while (j < result->h) { // find center of pixel for this scanline float scan_y_top = y + 0.0f; float scan_y_bottom = y + 1.0f; ActiveEdge **step = &active; memset(scanline , 0, result->w*sizeof(scanline[0])); memset(scanline2, 0, (result->w+1)*sizeof(scanline[0])); // update all active edges; // remove all active edges that terminate before the top of this scanline while (*step) { ActiveEdge * z = *step; if (z->ey <= scan_y_top) { *step = z->next; // delete from list assert(z->direction); z->direction = 0; hheap_free(&hh, z); } else { step = &((*step)->next); // advance through list } } // insert all edges that start before the bottom of this scanline while (e->y0 <= scan_y_bottom) { if (e->y0 != e->y1) { ActiveEdge *z = new_active(&hh, e, off_x, scan_y_top, mem, heap); if (z != nil) { if (j == 0 && off_y != 0) { if (z->ey < scan_y_top) { // this can happen due to subpixel positioning and some kind of fp rounding error i think z->ey = scan_y_top; } } assert(z->ey >= scan_y_top); // if we get really unlucky a tiny bit of an edge can be out of bounds // insert at front z->next = active; active = z; } } ++e; } // now process all active edges if (active) fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top); { float sum = 0; for (i=0; i < result->w; ++i) { float k; int m; sum += scanline2[i]; k = scanline[i] + sum; k = (float) fabs(k)*255 + 0.5f; m = (int) k; if (m > 255) m = 255; result->pixels[j*result->stride + i] = (uchar) m; } } // advance all the edges step = &active; while (*step) { ActiveEdge *z = *step; z->fx += z->fdx; // advance to position for current scanline step = &((*step)->next); // advance through list } ++y; ++j; } hheap_cleanup(&hh, mem, heap); if (scanline != scanline_data) mem.free(heap, scanline); } #define CMP_Y0(a,b) ((a)->y0 < (b)->y0) static void sort_edges_ins_sort(Edge *p, int n) { int i,j; for (i=1; i < n; ++i) { Edge t = p[i], *a = &t; j = i; while (j > 0) { Edge *b = &p[j-1]; int c = CMP_Y0(a,b); if (!c) break; p[j] = p[j-1]; --j; } if (i != j) p[j] = t; } } static void sort_edges_quicksort(Edge *p, int n) { /* threshold for transitioning to insertion sort */ while (n > 12) { Edge t; int c01,c12,c,m,i,j; /* compute median of three */ m = n >> 1; c01 = CMP_Y0(&p[0],&p[m]); c12 = CMP_Y0(&p[m],&p[n-1]); /* if 0 >= mid >= end, or 0 < mid < end, then use mid */ if (c01 != c12) { /* otherwise, we'll need to swap something else to middle */ int z; c = CMP_Y0(&p[0],&p[n-1]); /* 0>mid && midn => n; 0 0 */ /* 0n: 0>n => 0; 0 n */ z = (c == c12) ? 0 : n-1; t = p[z]; p[z] = p[m]; p[m] = t; } /* now p[m] is the median-of-three */ /* swap it to the beginning so it won't move around */ t = p[0]; p[0] = p[m]; p[m] = t; /* partition loop */ i=1; j=n-1; for(;;) { /* handling of equality is crucial here */ /* for sentinels & efficiency with duplicates */ for (;;++i) { if (!CMP_Y0(&p[i], &p[0])) break; } for (;;--j) { if (!CMP_Y0(&p[0], &p[j])) break; } /* make sure we haven't crossed */ if (i >= j) break; t = p[i]; p[i] = p[j]; p[j] = t; ++i; --j; } /* recurse on smaller side, iterate on larger */ if (j < (n-i)) { sort_edges_quicksort(p,j); p = p+i; n = n-i; } else { sort_edges_quicksort(p+i, n-i); n = j; } } } static void sort_edges(Edge *p, int n) { sort_edges_quicksort(p, n); sort_edges_ins_sort(p, n); } static void rasterize_points(font·Bitmap *result, Point *pts, int *wcount, int windings, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert, mem·Allocator mem, void *heap) { float y_scale_inv = invert ? -scale_y : scale_y; Edge *e; int n,i,j,k,m; int vsubsample = 1; // vsubsample should divide 255 evenly; otherwise we won't reach full opacity // now we have to blow out the windings into explicit edge lists n = 0; for (i=0; i < windings; ++i) n += wcount[i]; e = mem.alloc(heap, n+1, sizeof(*e)); // add an extra one as a sentinel if (e == 0) return; n = 0; m=0; for (i=0; i < windings; ++i) { Point *p = pts + m; m += wcount[i]; j = wcount[i]-1; for (k=0; k < wcount[i]; j=k++) { int a=k,b=j; // skip the Edge if horizontal if (p[j].y == p[k].y) continue; // add edge from j to k to the list e[n].invert = 0; if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) { e[n].invert = 1; a=j,b=k; } e[n].x0 = p[a].x * scale_x + shift_x; e[n].y0 = (p[a].y * y_scale_inv + shift_y) * vsubsample; e[n].x1 = p[b].x * scale_x + shift_x; e[n].y1 = (p[b].y * y_scale_inv + shift_y) * vsubsample; ++n; } } // now sort the edges by their highest point (should snap to integer, and then by x) sort_edges(e, n); // now, traverse the scanlines and find the intersections on each scanline, use xor winding rule rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, mem, heap); mem.free(heap, e); } static void add_point(Point *points, int n, float x, float y) { if (!points) return; // during first pass, it's unallocated points[n].x = x; points[n].y = y; } // tessellate until threshold p is happy... @TODO warped to compensate for non-linear stretching static int tesselate_curve(Point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float objspace_flatness_squared, int n) { // midpoint float mx = (x0 + 2*x1 + x2)/4; float my = (y0 + 2*y1 + y2)/4; // versus directly drawn line float dx = (x0+x2)/2 - mx; float dy = (y0+y2)/2 - my; if (n > 16) // 65536 segments on one curve better be enough! return 1; if (dx*dx+dy*dy > objspace_flatness_squared) { // half-pixel error allowed... need to be smaller if AA tesselate_curve(points, num_points, x0,y0, (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1); tesselate_curve(points, num_points, mx,my, (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1); } else { add_point(points, *num_points,x2,y2); *num_points = *num_points+1; } return 1; } static void tesselate_cubic(Point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float objspace_flatness_squared, int n) { // @TODO this "flatness" calculation is just made-up nonsense that seems to work well enough float dx0 = x1-x0; float dy0 = y1-y0; float dx1 = x2-x1; float dy1 = y2-y1; float dx2 = x3-x2; float dy2 = y3-y2; float dx = x3-x0; float dy = y3-y0; float longlen = (float) (sqrt(dx0*dx0+dy0*dy0)+sqrt(dx1*dx1+dy1*dy1)+sqrt(dx2*dx2+dy2*dy2)); float shortlen = (float) sqrt(dx*dx+dy*dy); float flatness_squared = longlen*longlen-shortlen*shortlen; if (n > 16) // 65536 segments on one curve better be enough! return; if (flatness_squared > objspace_flatness_squared) { float x01 = (x0+x1)/2; float y01 = (y0+y1)/2; float x12 = (x1+x2)/2; float y12 = (y1+y2)/2; float x23 = (x2+x3)/2; float y23 = (y2+y3)/2; float xa = (x01+x12)/2; float ya = (y01+y12)/2; float xb = (x12+x23)/2; float yb = (y12+y23)/2; float mx = (xa+xb)/2; float my = (ya+yb)/2; tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, objspace_flatness_squared,n+1); tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, objspace_flatness_squared,n+1); } else { add_point(points, *num_points,x3,y3); *num_points = *num_points+1; } } // returns number of contours static Point * flatten(font·Vertex *verts, int num_verts, float objspace_flatness, int **contour_lengths, int *num_contours, mem·Allocator mem, void *heap) { Point *points=0; int num_points=0; float objspace_flatness_squared = objspace_flatness * objspace_flatness; int i,n=0,start=0, pass; // count how many "moves" there are to get the contour count for (i=0; i < num_verts; ++i) if (verts[i].type == font·Vmove) ++n; *num_contours = n; if (n == 0) return 0; *contour_lengths = mem.alloc(heap, n, sizeof(**contour_lengths)); if (*contour_lengths == 0) { *num_contours = 0; return 0; } // make two passes through the points so we don't need to realloc for (pass=0; pass < 2; ++pass) { float x=0,y=0; if (pass == 1) { points = mem.alloc(heap, num_points, sizeof(points[0])); if (!points) goto error; } num_points = 0; n= -1; for (i=0; i < num_verts; ++i) { switch (verts[i].type) { case font·Vmove: // start the next contour if (n >= 0) (*contour_lengths)[n] = num_points - start; ++n; start = num_points; x = verts[i].x, y = verts[i].y; add_point(points, num_points++, x,y); break; case font·Vline: x = verts[i].x, y = verts[i].y; add_point(points, num_points++, x, y); break; case font·Vcurve: tesselate_curve(points, &num_points, x,y, verts[i].cx, verts[i].cy, verts[i].x, verts[i].y, objspace_flatness_squared, 0); x = verts[i].x, y = verts[i].y; break; case font·Vcubic: tesselate_cubic(points, &num_points, x,y, verts[i].cx, verts[i].cy, verts[i].cx1, verts[i].cy1, verts[i].x, verts[i].y, objspace_flatness_squared, 0); x = verts[i].x, y = verts[i].y; break; } } (*contour_lengths)[n] = num_points - start; } return points; error: mem.free(heap, points); mem.free(heap, *contour_lengths); *contour_lengths = nil; *num_contours = 0; return nil; } static void rasterize(font·Bitmap *result, float flatness_in_pixels, font·Vertex *verts, int num_verts, float scale_x, float scale_y, float shift_x, float shift_y, int x_off, int y_off, int invert, mem·Allocator mal, void *heap) { float scale = (scale_x > scale_y) ? scale_y : scale_x; int winding_count = 0; int *winding_lengths = nil; Point *windings = flatten(verts, num_verts, flatness_in_pixels / scale, &winding_lengths, &winding_count, mal, heap); if (windings) { rasterize_points(result, windings, winding_lengths, winding_count, scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, mal, heap); mal.free(heap, windings); mal.free(heap, winding_lengths); } } void font·freebitmap(font·Info *info, uchar *bm) { info->free(info->heap, bm); } uchar * font·glyph_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff) { int ix0,iy0,ix1,iy1; font·Bitmap gbm; font·Vertex *verts; int num_verts = font·glyph_shape(info, glyph, &verts); if (scale_x == 0) scale_x = scale_y; if (scale_y == 0) { if (scale_x == 0) { info->free(info->heap, verts); return nil; } scale_y = scale_x; } font·glyph_bitmapbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,&ix1,&iy1); // now we get the size gbm.w = (ix1 - ix0); gbm.h = (iy1 - iy0); gbm.pixels = nil; // in case we error if (width ) *width = gbm.w; if (height) *height = gbm.h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; if (gbm.w && gbm.h) { gbm.pixels = info->alloc(info->heap, 1, gbm.h*gbm.w); if (gbm.pixels) { gbm.stride = gbm.w; rasterize(&gbm, 0.35f, verts, num_verts, scale_x, scale_y, shift_x, shift_y, ix0, iy0, 1, info->mal, info->heap); } } info->free(info->heap, verts); return gbm.pixels; } uchar * font·glyph_makebitmap(font·Info *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff) { return font·glyph_makebitmap_subpixel(info, scale_x, scale_y, 0.0f, 0.0f, glyph, width, height, xoff, yoff); } void font·glyph_fillbitmap_subpixel(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph) { int ix0,iy0; font·Vertex *verts; int num_verts = font·glyph_shape(info, glyph, &verts); font·Bitmap gbm; font·glyph_bitmapbox_subpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,0,0); gbm.pixels = output; gbm.w = out_w; gbm.h = out_h; gbm.stride = out_stride; if (gbm.w && gbm.h) rasterize(&gbm, 0.35f, verts, num_verts, scale_x, scale_y, shift_x, shift_y, ix0,iy0, 1, info->mal, info->heap); info->free(info->heap, verts); } void font·glyph_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph) { font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f, 0.0f, glyph); } uchar * font·code_makebitmap_subpixel(font·Info *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return font·glyph_makebitmap_subpixel(info, scale_x, scale_y,shift_x,shift_y, font·glyph_index(info,codepoint), width,height,xoff,yoff); } void font·code_fillbitmap_subpixel_prefilter(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint) { font·glyph_fillbitmap_subpixel_prefilter(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, oversample_x, oversample_y, sub_x, sub_y, font·glyph_index(info,codepoint)); } void font·code_fillbitmap_subpixel(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint) { font·glyph_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, font·glyph_index(info, codepoint)); } uchar * font·code_makebitmap(font·Info *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return font·code_makebitmap_subpixel(info, scale_x, scale_y, 0.0f,0.0f, codepoint, width,height,xoff,yoff); } void font·code_fillbitmap(font·Info *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint) { font·code_fillbitmap_subpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, codepoint); } #define OVERMASK (SAMPLE-1) static void h_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { uchar buffer[SAMPLE]; int safe_w = w - kernel_width; int j; memset(buffer, 0, SAMPLE); for (j=0; j < h; ++j) { int i; unsigned int total; memset(buffer, 0, kernel_width); total = 0; // make kernel_width a constant in common cases so compiler can optimize out the divide switch (kernel_width) { case 2: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i]; pixels[i] = (uchar) (total / 2); } break; case 3: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i]; pixels[i] = (uchar) (total / 3); } break; case 4: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i]; pixels[i] = (uchar) (total / 4); } break; case 5: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i]; pixels[i] = (uchar) (total / 5); } break; default: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i]; pixels[i] = (uchar) (total / kernel_width); } break; } for (; i < w; ++i) { assert(pixels[i] == 0); total -= buffer[i & OVERMASK]; pixels[i] = (uchar) (total / kernel_width); } pixels += stride_in_bytes; } } static void v_prefilter(uchar *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { uchar buffer[SAMPLE]; int safe_h = h - kernel_width; int j; memset(buffer, 0, SAMPLE); for (j=0; j < w; ++j) { int i; unsigned int total; memset(buffer, 0, kernel_width); total = 0; // make kernel_width a constant in common cases so compiler can optimize out the divide switch (kernel_width) { case 2: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (uchar) (total / 2); } break; case 3: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (uchar) (total / 3); } break; case 4: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (uchar) (total / 4); } break; case 5: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (uchar) (total / 5); } break; default: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & OVERMASK]; buffer[(i+kernel_width) & OVERMASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (uchar) (total / kernel_width); } break; } for (; i < h; ++i) { assert(pixels[i*stride_in_bytes] == 0); total -= buffer[i & OVERMASK]; pixels[i*stride_in_bytes] = (uchar) (total / kernel_width); } pixels += 1; } } static float oversample_shift(int oversample) { if (!oversample) return 0.0f; // The prefilter is a box filter of width "oversample", // which shifts phase by (oversample - 1)/2 pixels in // oversampled space. We want to shift in the opposite // direction to counter this. return (float)-(oversample - 1) / (2.0f * (float)oversample); } // rects array must be big enough to accommodate all characters in the given ranges void font·glyph_fillbitmap_subpixel_prefilter(font·Info *info, uchar *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int prefilter_x, int prefilter_y, float *sub_x, float *sub_y, int glyph) { font·glyph_fillbitmap_subpixel(info, output, out_w - (prefilter_x - 1), out_h - (prefilter_y - 1), out_stride, scale_x, scale_y, shift_x, shift_y, glyph); if (prefilter_x > 1) h_prefilter(output, out_w, out_h, out_stride, prefilter_x); if (prefilter_y > 1) v_prefilter(output, out_w, out_h, out_stride, prefilter_y); *sub_x = oversample_shift(prefilter_x); *sub_y = oversample_shift(prefilter_y); } void font·scaledvmetrics(uchar *fontdata, int index, float size, float *ascent, float *descent, float *lineGap) { int i_ascent, i_descent, i_lineGap; float scale; font·Info info; init(&info, fontdata, font·offsetfor(fontdata, index)); scale = size > 0 ? font·scaleheightto(&info, size) : font·scaleheighttoem(&info, -size); font·vmetrics(&info, &i_ascent, &i_descent, &i_lineGap); *ascent = (float) i_ascent * scale; *descent = (float) i_descent * scale; *lineGap = (float) i_lineGap * scale; } // ----------------------------------------------------------------------- // sdf computation static int ray_intersect_bezier(float orig[2], float ray[2], float q0[2], float q1[2], float q2[2], float hits[2][2]) { float q0perp = q0[1]*ray[0] - q0[0]*ray[1]; float q1perp = q1[1]*ray[0] - q1[0]*ray[1]; float q2perp = q2[1]*ray[0] - q2[0]*ray[1]; float roperp = orig[1]*ray[0] - orig[0]*ray[1]; float a = q0perp - 2*q1perp + q2perp; float b = q1perp - q0perp; float c = q0perp - roperp; float s0 = 0., s1 = 0.; int num_s = 0; if (a != 0.0) { float discr = b*b - a*c; if (discr > 0.0) { float rcpna = -1 / a; float d = (float) sqrt(discr); s0 = (b+d) * rcpna; s1 = (b-d) * rcpna; if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; if (d > 0.0 && s1 >= 0.0 && s1 <= 1.0) { if (num_s == 0) s0 = s1; ++num_s; } } } else { // 2*b*s + c = 0 // s = -c / (2*b) s0 = c / (-2 * b); if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; } if (num_s == 0) return 0; else { float rcp_len2 = 1 / (ray[0]*ray[0] + ray[1]*ray[1]); float rayn_x = ray[0] * rcp_len2, rayn_y = ray[1] * rcp_len2; float q0d = q0[0]*rayn_x + q0[1]*rayn_y; float q1d = q1[0]*rayn_x + q1[1]*rayn_y; float q2d = q2[0]*rayn_x + q2[1]*rayn_y; float rod = orig[0]*rayn_x + orig[1]*rayn_y; float q10d = q1d - q0d; float q20d = q2d - q0d; float q0rd = q0d - rod; hits[0][0] = q0rd + s0*(2.0f - 2.0f*s0)*q10d + s0*s0*q20d; hits[0][1] = a*s0+b; if (num_s > 1) { hits[1][0] = q0rd + s1*(2.0f - 2.0f*s1)*q10d + s1*s1*q20d; hits[1][1] = a*s1+b; return 2; } else { return 1; } } } static int equal(float *a, float *b) { return (a[0] == b[0] && a[1] == b[1]); } static int compute_crossings_x(float x, float y, int nverts, font·Vertex *verts) { int i; float orig[2], ray[2] = { 1, 0 }; float y_frac; int winding = 0; orig[0] = x; orig[1] = y; // make sure y never passes through a vertex of the shape y_frac = (float) fmod(y, 1.0f); if (y_frac < 0.01f) y += 0.01f; else if (y_frac > 0.99f) y -= 0.01f; orig[1] = y; // test a ray from (-infinity,y) to (x,y) for (i=0; i < nverts; ++i) { if (verts[i].type == font·Vline) { int x0 = (int) verts[i-1].x, y0 = (int) verts[i-1].y; int x1 = (int) verts[i ].x, y1 = (int) verts[i ].y; if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } if (verts[i].type == font·Vcurve) { int x0 = (int) verts[i-1].x , y0 = (int) verts[i-1].y ; int x1 = (int) verts[i ].cx, y1 = (int) verts[i ].cy; int x2 = (int) verts[i ].x , y2 = (int) verts[i ].y ; int ax = MIN(x0,MIN(x1,x2)), ay = MIN(y0,MIN(y1,y2)); int by = MAX(y0,MAX(y1,y2)); if (y > ay && y < by && x > ax) { float q0[2],q1[2],q2[2]; float hits[2][2]; q0[0] = (float)x0; q0[1] = (float)y0; q1[0] = (float)x1; q1[1] = (float)y1; q2[0] = (float)x2; q2[1] = (float)y2; if (equal(q0,q1) || equal(q1,q2)) { x0 = (int)verts[i-1].x; y0 = (int)verts[i-1].y; x1 = (int)verts[i ].x; y1 = (int)verts[i ].y; if (y > MIN(y0,y1) && y < MAX(y0,y1) && x > MIN(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } else { int num_hits = ray_intersect_bezier(orig, ray, q0, q1, q2, hits); if (num_hits >= 1) if (hits[0][0] < 0) winding += (hits[0][1] < 0 ? -1 : 1); if (num_hits >= 2) if (hits[1][0] < 0) winding += (hits[1][1] < 0 ? -1 : 1); } } } } return winding; } static float cuberoot(float x) { if (x<0) return -(float) pow(-x,1.0f/3.0f); else return (float) pow( x,1.0f/3.0f); } // x^3 + c*x^2 + b*x + a = 0 static int solve_cubic(float a, float b, float c, float *r) { float s = -a / 3; float p = b - a*a / 3; float q = a * (2*a*a - 9*b) / 27 + c; float p3 = p*p*p; float d = q*q + 4*p3 / 27; if (d >= 0) { float z = (float) sqrt(d); float u = (-q + z) / 2; float v = (-q - z) / 2; u = cuberoot(u); v = cuberoot(v); r[0] = s + u + v; return 1; } else { float u = (float) sqrt(-p/3); float v = (float) acos(-sqrt(-27/p3) * q / 2) / 3; // p3 must be negative, since d is negative float m = (float) cos(v); float n = (float) cos(v-3.141592/2)*1.732050808f; r[0] = s + u * 2 * m; r[1] = s - u * (m + n); r[2] = s - u * (m - n); return 3; } } uchar * font·glyph_sdf(font·Info *info, float scale, int glyph, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { float scale_x = scale, scale_y = scale; int ix0,iy0,ix1,iy1; int w,h; uchar *data; if (scale == 0) return nil; font·glyph_bitmapbox_subpixel(info, glyph, scale, scale, 0.0f,0.0f, &ix0,&iy0,&ix1,&iy1); // if empty, return nil if (ix0 == ix1 || iy0 == iy1) return nil; ix0 -= padding; iy0 -= padding; ix1 += padding; iy1 += padding; w = (ix1 - ix0); h = (iy1 - iy0); if (width ) *width = w; if (height) *height = h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; // invert for y-downwards bitmaps scale_y = -scale_y; { int x,y,i,j; float *precompute; font·Vertex *verts; int num_verts = font·glyph_shape(info, glyph, &verts); data = info->alloc(info->heap, 1, w * h); precompute = info->alloc(info->heap, num_verts, sizeof(float)); for (i=0,j=num_verts-1; i < num_verts; j=i++) { if (verts[i].type == font·Vline) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; float x1 = verts[j].x*scale_x, y1 = verts[j].y*scale_y; float dist = (float) sqrt((x1-x0)*(x1-x0) + (y1-y0)*(y1-y0)); precompute[i] = (dist == 0) ? 0.0f : 1.0f / dist; } else if (verts[i].type == font·Vcurve) { float x2 = verts[j].x *scale_x, y2 = verts[j].y *scale_y; float x1 = verts[i].cx*scale_x, y1 = verts[i].cy*scale_y; float x0 = verts[i].x *scale_x, y0 = verts[i].y *scale_y; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float len2 = bx*bx + by*by; if (len2 != 0.0f) precompute[i] = 1.0f / (bx*bx + by*by); else precompute[i] = 0.0f; } else precompute[i] = 0.0f; } for (y=iy0; y < iy1; ++y) { for (x=ix0; x < ix1; ++x) { float val; float min_dist = 999999.0f; float sx = (float) x + 0.5f; float sy = (float) y + 0.5f; float x_gspace = (sx / scale_x); float y_gspace = (sy / scale_y); int winding = compute_crossings_x(x_gspace, y_gspace, num_verts, verts); // @OPTIMIZE: this could just be a rasterization, but needs to be line vs. non-tesselated curves so a new path for (i=0; i < num_verts; ++i) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; // check against every point here rather than inside line/curve primitives -- @TODO: wrong if multiple 'moves' in a row produce a garbage point, and given culling, probably more efficient to do within line/curve float dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy); if (dist2 < min_dist*min_dist) min_dist = (float)sqrt(dist2); if (verts[i].type == font·Vline) { float x1 = verts[i-1].x*scale_x, y1 = verts[i-1].y*scale_y; // coarse culling against bbox //if (sx > MIN(x0,x1)-min_dist && sx < MAX(x0,x1)+min_dist && // sy > MIN(y0,y1)-min_dist && sy < MAX(y0,y1)+min_dist) float dist = (float) fabs((x1-x0)*(y0-sy) - (y1-y0)*(x0-sx)) * precompute[i]; assert(i != 0); if (dist < min_dist) { // check position along line // x' = x0 + t*(x1-x0), y' = y0 + t*(y1-y0) // minimize (x'-sx)*(x'-sx)+(y'-sy)*(y'-sy) float dx = x1-x0, dy = y1-y0; float px = x0-sx, py = y0-sy; // minimize (px+t*dx)^2 + (py+t*dy)^2 = px*px + 2*px*dx*t + t^2*dx*dx + py*py + 2*py*dy*t + t^2*dy*dy // derivative: 2*px*dx + 2*py*dy + (2*dx*dx+2*dy*dy)*t, set to 0 and solve float t = -(px*dx + py*dy) / (dx*dx + dy*dy); if (t >= 0.0f && t <= 1.0f) min_dist = dist; } } else if (verts[i].type == font·Vcurve) { float x2 = verts[i-1].x *scale_x, y2 = verts[i-1].y *scale_y; float x1 = verts[i ].cx*scale_x, y1 = verts[i ].cy*scale_y; float box_x0 = MIN(MIN(x0,x1),x2); float box_y0 = MIN(MIN(y0,y1),y2); float box_x1 = MAX(MAX(x0,x1),x2); float box_y1 = MAX(MAX(y0,y1),y2); // coarse culling against bbox to avoid computing cubic unnecessarily if (sx > box_x0-min_dist && sx < box_x1+min_dist && sy > box_y0-min_dist && sy < box_y1+min_dist) { int num=0; float ax = x1-x0, ay = y1-y0; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float mx = x0 - sx, my = y0 - sy; float res[3],px,py,t,it; float a_inv = precompute[i]; if (a_inv == 0.0) { // if a_inv is 0, it's 2nd degree so use quadratic formula float a = 3*(ax*bx + ay*by); float b = 2*(ax*ax + ay*ay) + (mx*bx+my*by); float c = mx*ax+my*ay; if (a == 0.0) { // if a is 0, it's linear if (b != 0.0) { res[num++] = -c/b; } } else { float discriminant = b*b - 4*a*c; if (discriminant < 0) num = 0; else { float root = (float) sqrt(discriminant); res[0] = (-b - root)/(2*a); res[1] = (-b + root)/(2*a); num = 2; // don't bother distinguishing 1-solution case, as code below will still work } } } else { float b = 3*(ax*bx + ay*by) * a_inv; // could precompute this as it doesn't depend on sample point float c = (2*(ax*ax + ay*ay) + (mx*bx+my*by)) * a_inv; float d = (mx*ax+my*ay) * a_inv; num = solve_cubic(b, c, d, res); } if (num >= 1 && res[0] >= 0.0f && res[0] <= 1.0f) { t = res[0], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) sqrt(dist2); } if (num >= 2 && res[1] >= 0.0f && res[1] <= 1.0f) { t = res[1], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) sqrt(dist2); } if (num >= 3 && res[2] >= 0.0f && res[2] <= 1.0f) { t = res[2], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) sqrt(dist2); } } } } if (winding == 0) min_dist = -min_dist; // if outside the shape, value is negative val = onedge_value + pixel_dist_scale * min_dist; if (val < 0) val = 0; else if (val > 255) val = 255; data[(y-iy0)*w+(x-ix0)] = (uchar) val; } } info->free(info->heap,precompute); info->free(info->heap, verts); } return data; } uchar * font·code_sdf(font·Info *info, float scale, int codepoint, int padding, uchar onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { return font·glyph_sdf(info, scale, font·glyph_index(info, codepoint), padding, onedge_value, pixel_dist_scale, width, height, xoff, yoff); } void font·freesdf(font·Info* info, uchar *bitmap) { info->free(info->heap, bitmap); } char* font·name(font·Info *font, int *length, int platformID, int encodingID, int languageID, int nameID) { int32 i,count,stringOffset; uchar *fc = font->data; uint32 offset = font->fontstart; uint32 nm = find_table(fc, offset, "name"); if (!nm) return nil; count = ttushort(fc+nm+2); stringOffset = nm + ttushort(fc+nm+4); for (i=0; i < count; ++i) { uint32 loc = nm + 6 + 12 * i; if (platformID == ttushort(fc+loc+0) && encodingID == ttushort(fc+loc+2) && languageID == ttushort(fc+loc+4) && nameID == ttushort(fc+loc+6)) { *length = ttushort(fc+loc+8); return (char *) (fc+stringOffset+ttushort(fc+loc+10)); } } return nil; } #if 0 static int matchpair(uchar *fc, uint32 nm, uchar *name, int32 nlen, int32 target_id, int32 next_id) { int32 i; int32 count = ttushort(fc+nm+2); int32 stringOffset = nm + ttushort(fc+nm+4); for (i=0; i < count; ++i) { uint32 loc = nm + 6 + 12 * i; int32 id = ttushort(fc+loc+6); if (id == target_id) { // find the encoding int32 platform = ttushort(fc+loc+0), encoding = ttushort(fc+loc+2), language = ttushort(fc+loc+4); // is this a Unicode encoding? if (platform == 0 || (platform == 3 && encoding == 1) || (platform == 3 && encoding == 10)) { int32 slen = ttushort(fc+loc+8); int32 off = ttushort(fc+loc+10); // check if there's a prefix match int32 matchlen = CompareUTF8toUTF16_bigendian_prefix(name, nlen, fc+stringOffset+off,slen); if (matchlen >= 0) { // check for target_id+1 immediately following, with same encoding & language if (i+1 < count && ttushort(fc+loc+12+6) == next_id && ttushort(fc+loc+12) == platform && ttushort(fc+loc+12+2) == encoding && ttushort(fc+loc+12+4) == language) { slen = ttushort(fc+loc+12+8); off = ttushort(fc+loc+12+10); if (slen == 0) { if (matchlen == nlen) return 1; } else if (matchlen < nlen && name[matchlen] == ' ') { ++matchlen; if (font·CompareUTF8toUTF16_bigendian((char*) (name+matchlen), nlen-matchlen, (char*)(fc+stringOffset+off),slen)) return 1; } } else { // if nothing immediately following if (matchlen == nlen) return 1; } } } // @TODO handle other encodings } } return 0; } static int matches(uchar *fc, uint32 offset, uchar *name, int32 flags) { int32 nlen = (int32) strlen((char *) name); uint32 nm, hd; if (!isfont(fc+offset)) return 0; // check italics/bold/underline flags in macStyle... if (flags) { hd = find_table(fc, offset, "head"); if ((ttushort(fc+hd+44) & 7) != (flags & 7)) return 0; } nm = find_table(fc, offset, "name"); if (!nm) return 0; if (flags) { // if we checked the macStyle flags, then just check the family and ignore the subfamily if (matchpair(fc, nm, name, nlen, 16, -1)) return 1; if (matchpair(fc, nm, name, nlen, 1, -1)) return 1; if (matchpair(fc, nm, name, nlen, 3, -1)) return 1; } else { if (matchpair(fc, nm, name, nlen, 16, 17)) return 1; if (matchpair(fc, nm, name, nlen, 1, 2)) return 1; if (matchpair(fc, nm, name, nlen, 3, -1)) return 1; } return 0; } int font·findmatch(uchar *font_collection, char *name_utf8, int32 flags) { int32 i; for (i=0;;++i) { int32 off = font·offsetfor(font_collection, i); if (off < 0) return off; if (matches((uchar *) font_collection, off, (uchar*) name_utf8, flags)) return off; } } #endif