aboutsummaryrefslogtreecommitdiff
path: root/sys/libbio/phylo.c
blob: 4a4bcb1d5ea5d091bf418441a4fc19310be102b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include <u.h>
#include <libn.h>
#include <libbio.h>

// -----------------------------------------------------------------------
// subtree manipulation methods
// NOTE: As of now these don't update nnode & nleaf stats.
//       It is the caller's responsibility to refresh counts.

error
phylo·addchild(bio·Node* parent, bio·Node* child)
{
    bio·Node *it, *sibling;
    if (!parent->nchild) {
        parent->child = child;
        goto SUCCESS;
    }

    for (it = parent->child, sibling = it; it != nil; it = it->sibling) {
        sibling = it;
    }
    sibling->sibling = child;

SUCCESS:
    child->parent = parent;
    parent->nchild++;
    return 0;
}

error
phylo·rmchild(bio·Node *parent, bio·Node *child)
{
    bio·Node *it, *prev;
    enum {
        error·nil,
        error·notfound,
        error·nochildren,
    };

    prev = nil;
    for (it = parent->child; it != nil; it = it->sibling) {
        if (it == child) goto FOUND;
        prev = it;
    }
    return error·notfound;

FOUND:
    if (prev == nil) {
        parent->child = child->sibling;
    } else {
        prev->sibling = child->sibling;
    }
    return error·nil;
}

// -----------------------------------------------------------------------
// subtree statistics

error
phylo·countnodes(bio·Node *node, int *n)
{
    int       m;
    error     err;
    bio·Node *child;
    
    m = *n;
    for (child = node->child; child != nil; child = child->sibling) {
        if (err = phylo·countnodes(child, n), err) {
            errorf("node count: failure at '%s'", child->name);
            return 1;
        }
    }
    node->nnode = *n - m;
    *n += 1;

    return 0;
}

error
phylo·countleafs(bio·Node *node, int *n)
{
    error     err;
    bio·Node *child;
    
    if (!node->nchild) {
        *n += 1;
    }

    for (child = node->child; child != nil; child = child->sibling) {
        if (err = phylo·countleafs(child, n), err) {
            errorf("leaf count: failure at '%s'", child->name);
            return 1;
        }
    }

    return 0;
}

// -----------------------------------------------------------------------
// tree editing

static
void
sortnodelist(bio·Node **head, bio·Node *next)
{
    bio·Node tmp, *it;

    it          = &tmp;
    tmp.sibling = *head;

    while (it->sibling != nil && it->sibling->nnode < next->nnode) {
        it = it->sibling;
    }

    next->sibling = it->sibling;
    it->sibling = next;
    *head = tmp.sibling;
}

error
phylo·ladderize(bio·Node *root)
{
    int       i;
    error     err;
    bio·Node *child, *sorted, *sibling;

    if (!root->nchild) return 0;

    // ladderize below 
    for (child = root->child; child != nil; child = child->sibling) {
        if (err = phylo·ladderize(child), err) {
            errorf("ladderize: failure at '%s'", child->name);
            return 1;
        }
    }

    // ladderize yourself
    sorted = nil;
    child  = root->child;
    while (child != nil) {
        sibling = child->sibling;
        sortnodelist(&sorted, child);
        child   = sibling;
    }
    root->child = sorted;

    return 0;
}

static
error
rotateparent(bio·Node *node, bio·Node *to)
{
    error err;
    bio·Node *it, *prev;

    if (node->parent == to) {
        return 0;
    }

    prev = nil;
    for (it = node->child; it != nil; it = it->sibling) {
        if (it == to) goto FOUND;
        prev = it;
    }
    errorf("inconsistent topology: attempting to rotate to non-child");
    return 1;

FOUND:
    if (err = rotateparent(node->parent, node), err) {
        errorf("failure: broken tree");
        return err;
    }

    if (!prev) {
        node->child   = node->parent;
    } else {
        prev->sibling = node->parent;
    }
    node->parent->sibling = it->sibling;
    node->parent          = to;

    return 0;
}

#define FLOAT_PREC .00000001
error
phylo·reroot(bio·Tree *tree, bio·Node *node, double d)
{
    bio·Node *old;
    bio·Node *new;

    // TODO: should check that node is part of this tree?
    
    old = tree->root;
    if (fabs(d) < FLOAT_PREC)            new = node;
    if (fabs(d-node->dist) < FLOAT_PREC) new = node->parent;
    else {
        new = tree->heap.alloc(tree->h, 1, sizeof(*new));
        memset(new, 0, sizeof(*new));
    }

    // TODO: Use rotateparent() to perform necessary flips

    tree->root = new;
    return 0;
}